4 resultados para cellulose

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pyrolytic behaviour of individual component in biomass needs to be understood to gain insight into the mechanism of biomass pyrolysis. A comparative study on the pyrolysis of cellulose (hexose-based polysaccharides) and hemicallulose (pentose-based polysaccharides) is performed by two sets of experiments including TG analysis and Py-GC-MS/FTIR. The samples of these two polysaccharide components are thermally decomposed in TGA at the heating rate of 5 and 60 K/min to demonstrate the different characteristics of mass loss stage(s) between them. The yield of pyrolytic products is examined by a fluidized-bed fast pyrolysis unit. The experiment confirms that cellulose mainly contributes to bio-oil production (reaching the maximum of 72% at 580 °C), while hemicellulose works as an important precursor for the char production (∼25%). The compounds in the gaseous mixture (CO and CO2) and bio-oil (levoglucosan, furfural, aldehyde, acetone and acetic acid) are further characterized by GC-MS for cellulose and GC-FTIR for hemicellulose, and their formations are investigated thoroughly. © 2010 Elsevier Ltd. All rights reserved.