2 resultados para Yield Response

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic membrane proteins cannot be produced in a reliable manner for structural analysis. Consequently, researchers still rely on trial-and-error approaches, which most often yield insufficient amounts. This means that membrane protein production is recognized by biologists as the primary bottleneck in contemporary structural genomics programs. Here, we describe a study to examine the reasons for successes and failures in recombinant membrane protein production in yeast, at the level of the host cell, by systematically quantifying cultures in high-performance bioreactors under tightlydefined growth regimes. Our data show that the most rapid growth conditions of those chosen are not the optimal production conditions. Furthermore, the growth phase at which the cells are harvested is critical: We show that it is crucial to grow cells under tightly-controlled conditions and to harvest them prior to glucose exhaustion, just before the diauxic shift. The differences in membrane protein yields that we observe under different culture conditions are not reflected in corresponding changes in mRNA levels of FPS1, but rather can be related to the differential expression of genes involved in membrane protein secretion and yeast cellular physiology. Copyright © 2005 The Protein Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation into the Acoustic Emission (AE) response of sand has been undertaken, and the use of AE as a method of yield point identification has been assessed. Dense, saturated samples of sand were tested in conventional triaxial apparatus. The measurements of stresses and strains were carried out according to current research practice. The AE monitoring system was integrated with the soil mechanics equipment in such a way that sample disturbance was minimised. During monotonically loaded, constant cell pressure tests the total number of events recorded was found to increase at an increasing rate in a manner which may be approximated by a power law. The AE response of the sand was found to be both stress level and stress path dependent. Undrained constant cell pressure tests showed that, unlike drained tests, the AE event rate increased at an increasing rate; this was shown to correlate with the mean effective stress variation. The stress path dependence was most noticeable in extension tests, where the number of events recorded was an order of magnitude less than that recorded in comparable compression tests. This stress path dependence was shown to be due to the differences in the work done by the external stresses. In constant cell pressure tests containing unload/reload cycles it was found that yield could be identified from a discontinuity in the event rate/time curve which occurred during reloading. Further tests involving complex stress paths showed that AE was a useful method of yield point identification. Some tests involving large stress reversals were carried out, and AE identified the inverse yield points more distinctly than conventional methods of yield point identification.