5 resultados para Wolffian duct

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis - Loss of the trophic support provided by surrounding non-endocrine pancreatic cell populations underlies the decline in beta cell mass and insulin secretory function observed in human islets following isolation and culture. This study sought to determine whether restoration of regulatory influences mediated by ductal epithelial cells promotes sustained beta cell function in vitro. Methods - Human islets were isolated according to existing protocols. Ductal epithelial cells were harvested from the exocrine tissue remaining after islet isolation, expanded in monolayer culture and characterised using fluorescence immunocytochemistry. The two cell types were co-cultured under conventional static culture conditions or within a rotational cell culture system. The effect of co-culture on islet structural integrity, beta cell mass and insulin secretory capacity was observed for 10 days following isolation. Results - Human islets maintained under conventional culture conditions exhibited a characteristic loss in structural integrity and functional viability as indicated by a diminution of glucose responsiveness. By contrast, co-culture of islets with ductal epithelial cells led to preserved islet morphology and sustained beta cell function, most evident in co-cultures held within the rotational cell culture system, which showed a significantly (p<0.05) greater insulin secretory response to elevated glucose compared with control islets. Similarly, insulin/protein ratio data suggested that the presence of ductal epithelial cells is beneficial for the maintenance of beta cell mass. Conclusions/interpretation - The data indicate a supportive role for ductal epithelial cells in islet viability. Further characterisation of the regulatory influences may lead to novel strategies to improve long-term beta cell function both in vitro and following islet transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Packed beds have many industrial applications and are increasingly used in the process industries due to their low pressure drop. With the introduction of more efficient packings, novel packing materials (i.e. adsorbents) and new applications (i.e. flue gas desulphurisation); the aspect ratio (height to diameter) of such beds is decreasing. Obtaining uniform gas distribution in such beds is of crucial importance in minimising operating costs and optimising plant performance. Since to some extent a packed bed acts as its own distributor the importance of obtaining uniform gas distribution has increased as aspect ratios (bed height to diameter) decrease. There is no rigorous design method for distributors due to a limited understanding of the fluid flow phenomena and in particular of the effect of the bed base / free fluid interface. This study is based on a combined theoretical and modelling approach. The starting point is the Ergun Equation which is used to determine the pressure drop over a bed where the flow is uni-directional. This equation has been applied in a vectorial form so it can be applied to maldistributed and multi-directional flows and has been realised in the Computational Fluid Dynamics code PHOENICS. The use of this equation and its application has been verified by modelling experimental measurements of maldistributed gas flows, where there is no free fluid / bed base interface. A novel, two-dimensional experiment has been designed to investigate the fluid mechanics of maldistributed gas flows in shallow packed beds. The flow through the outlet of the duct below the bed can be controlled, permitting a rigorous investigation. The results from this apparatus provide useful insights into the fluid mechanics of flow in and around a shallow packed bed and show the critical effect of the bed base. The PHOENICS/vectorial Ergun Equation model has been adapted to model this situation. The model has been improved by the inclusion of spatial voidage variations in the bed and the prescription of a novel bed base boundary condition. This boundary condition is based on the logarithmic law for velocities near walls without restricting the velocity at the bed base to zero and is applied within a turbulence model. The flow in a curved bed section, which is three-dimensional in nature, is examined experimentally. The effect of the walls and the changes in gas direction on the gas flow are shown to be particularly significant. As before, the relative amounts of gas flowing through the bed and duct outlet can be controlled. The model and improved understanding of the underlying physical phenomena form the basis for the development of new distributors and rigorous design methods for them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research objectives were:- 1.To review the literature to establish the factors which have traditionally been regarded as most crucial to the design of effectlve exhaust ventilation systems. 2. To design, construct, install and calibrate a wind tunnel. 3. To develop procedures for air velocity measurement followed by a comprehensive programme of aerodvnamic data collection and data analysis for a variety of conditions. The major research findings were:- a) The literature in the subject is inadequate. There is a particular need for a much greater understanding of the aerodynamics of the suction flow field. b) The discrepancies between the experimentally observed centre-line velocities and those predicted by conventional formulae are unacceptably large. c) There was little agreement between theoretically calculated and observed velocities in the suction zone of captor hoods. d) Improved empirical formulae for the prediction of centre-line velocity applicable to the classical geometrically shaped suction openings and the flanged condition could be (and were) derived. Further analysis of data revealed that: - i) Point velocity is directly proportional to the suction. flow rate and the ratio of the point velocity to the average face velocity is constant. ii) Both shape, and size of the suction opening are significant factors as the coordinates of their points govern the extent of the effect of the suction flow field. iii) The hypothetical ellipsoidal potential function and hyperbolic streamlines were found experimentally to be correct. iv) The effect of guide plates depends on the size, shape and the angle of fitting. The effect was to very approximately double the suction velocity but the exact effect is difficult to predict. v) The axially symmetric openings produce practically symmetric flow fields. Similarity of connection pieces between the suction opening and the main duct in each case is essential in order to induce a similar suction flow field. Additionally a pilot study was made in which an artificial extraneous air flow was created, measured and its interaction with the suction flow field measured and represented graphically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments and theoretical modelling have been carried out to predict the performance of a solar-powered liquid desiccant cooling system for greenhouses. We have tested two components of the system in the laboratory using MgCl2 desiccant: (i) a regenerator which was tested under a solar simulator and (ii) a desiccator which was installed in a test duct. Theoretical models have been developed for both regenerator and desiccator and gave good agreement with the experiments. The verified computer model is used to predict the performance of the whole system during the hot summer months in Mumbai, Chittagong, Muscat, Messina and Havana. Taking examples of temperate, sub-tropical, tropical and heat-tolerant tropical crops (lettuce, soya bean, tomato and cucumber respectively) we estimate the extensions in growing seasons enabled by the system. Compared to conventional evaporative cooling, the desiccant system lowers average daily maximum temperatures in the hot season by 5.5-7.5 °C, sufficient to maintain viable growing conditions for lettuce throughout the year. In the case of tomato, cucumber and soya bean the system enables optimal cultivation through most summer months. It is concluded that the concept is technically viable and deserves testing by means of a pilot installation at an appropriate location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of friction and interparticle cohesion forces on the gas-solid flow hydrodynamics was discussed. A proposed interparticle cohesion and frictional force terms have been tested in a continuum fully developed flow model to investigate their effect on the general hydrodynamic features of vertical duct flow. It was observed that both terms have direct effect on lowering the material carryover, which implies a reduced bed expansion in freely bubbling column. The parametric analysis shows that cohesion and frictional forces are high when compared to kinetic stress and hence it can play a major role in describing the hydrodynamics features of the flow.