16 resultados para Tyrosine hydroxylase

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The loss of dopamine in idiopathic or animal models of Parkinson's disease induces synchronized low-frequency oscillatory burst-firing in subthalamic nucleus neurones. We sought to establish whether these firing patterns observed in vivo were preserved in slices taken from dopamine-depleted animals, thus establishing a role for the isolated subthalamic-globus pallidus complex in generating the pathological activity. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed significant reductions of over 90% in levels of dopamine as measured in striatum by high pressure liquid chromatography. Likewise, significant reductions in tyrosine hydroxylase immunostaining within the striatum (>90%) and tyrosine hydroxylase positive cell numbers (65%) in substantia nigra were observed. Compared with slices from intact mice, neurones in slices from MPTP-lesioned mice fired significantly more slowly (mean rate of 4.2 Hz, cf. 7.2 Hz in control) and more irregularly (mean coefficient of variation of inter-spike interval of 94.4%, cf. 37.9% in control). Application of ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonopentanoic acid (AP5) and the GABAA receptor antagonist picrotoxin caused no change in firing pattern. Bath application of dopamine significantly increased cell firing rate and regularized the pattern of activity in cells from slices from both MPTP-treated and control animals. Although the absolute change was more modest in control slices, the maximum dopamine effect in the two groups was comparable. Indeed, when taking into account the basal firing rate, no differences in the sensitivity to dopamine were observed between these two cohorts. Furthermore, pairs of subthalamic nucleus cells showed no correlated activity in slices from either control (21 pairs) or MPTP-treated animals (20 pairs). These results indicate that the isolated but interconnected subthalamic-globus pallidus network is not itself sufficient to generate the aberrant firing patterns in dopamine-depleted animals. More likely, inputs from other regions, such as the cortex, are needed to generate pathological oscillatory activity. © 2006 IBRO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: C-Reactive protein (CRP) can modulate integrin surface expression on monocytes following Fcγ receptor engagement. We have investigated the signal transduction events causing this phenotypic alteration. Methods: CRP-induced signalling events were examined in THP-1 and primary monocytes, measuring Syk phosphorylation by Western blotting, intracellular Ca2+ ([Ca2+]i) by Indo-1 fluorescence and surface expression of CD11b by flow cytometry. Cytosolic peroxides were determined by DCF fluorescence. Results: CRP induced phosphorylation of Syk and an increase in [Ca2+]i both of which were inhibitable by the Syk specific antagonist, piceatannol. Piceatannol also inhibited the CRP-induced increase in surface CD11b. In addition, pre-treatment of primary monoytes with the Ca2+ mobiliser, thapsigargin, increased CD11b expression; this effect was accentuated in the presence of CRP but was abolished in the presence of the [Ca2+]i chelator, BAPTA. CRP also increased cytosolic peroxide levels; this effect was attenuated by antioxidants (ascorbate, α-tocopherol), expression of surface CD11b not being inhibited by antioxidants alone. Conclusion: CRP induces CD11b expression in monocytes through a peroxide independent pathway involving both Syk phosphorylation and [Ca2+]i release. © Birkhäuser Verlag, 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transglutaminase 2 (TG2) is a protein crosslinking enzyme with several additional biochemical functions. Loss of TG2 in vivo results in impaired phagocytosis of apoptotic cells and altered proinflammatory cytokine production by macrophages engulfing apoptotic cells leading to autoimmunity. It has been proposed that TG2 acts as an integrin ß(3) coreceptor in the engulfment process, while altered proinflammatory cytokine production is related to the lack of latent TGFß activation by TG2 null macrophages. Here we report that TG2 null macrophages respond to lipopolysaccharide treatment by elevated IL-6 and TNFa production. Though TGFß has been proposed to act as a feed back regulator of proinflammatory cytokine production in LPS-stimulated macrophages, this phenomenon is not related to the lack of active TGFß production. Instead, in the absence of TG2 integrin ß(3) maintains an elevated basal Src family kinase activity in macrophages, which leads to enhanced phosphorylation and degradation of the I?Ba. Low basal levels of I?Ba explain the enhanced sensitivity of TG2 null macrophages to signals that regulate NF-?B. Our data suggest that TG2 null macrophages bear a proinflammatory phenotype, which might contribute to the enhanced susceptibility of these mice to develop autoimmunity and atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the work described in this paper was two-fold: (1) the purification of the hydroxylase component of the MSAMO to electrophoretic homogeneity using a four-step chromatographic strategy and (2) the crystallization of the two-component hydroxylase of the MSAMO in order to enhance our understanding of the precise three-dimensional structure of the MSAMO, thus yielding an insight into the nature of the active site of this enzyme. Optimised crystallization conditions were identified allowing growth of crystals of the hydroxylase component of the MSAMO within five days. Crystals exhibited a brown colour suggesting the presence on an intact Rieske-iron sulfur centre and diffracted to 7.0 Å when a few degrees of data were evaluated on a beam line X11. © 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in the generation and interpretation of proteomics data have spurred a transition from focusing on protein identification to functional analysis. Here we review recent proteomics results that have elucidated new aspects of the roles and regulation of signal transduction pathways in cancer using the epidermal growth factor receptor (EGFR), ERK and breakpoint cluster region (BCR)-ABL1 networks as examples. The emerging theme is to understand cancer signalling as networks of multiprotein machines which process information in a highly dynamic environment that is shaped by changing protein interactions and post-translational modifications (PTMs). Cancerous genetic mutations derange these protein networks in complex ways that are tractable by proteomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant tyrosine protein kinase activity has been implicated in the formation and maintenance of malignancy and so presents a potential target for cancer chemotherapy. Quercetin, a naturally occuring flavonoid, inhibits the tyrosine protein kinase encoded by the Rous sarcoma virus but also exhibits many other effects. Analogues of this compound were synthesised by the acylation of suitable 2-hydroxyacetophenones with appropriately substituted aromatic (or alicyclic) acid chlorides, followed by base catalysed rearrangement to the 1-(2-hydroxyphenyl)-3-phenylpropan-1,3-diones. Acid catalysed ring closure furnished flavones. The majority of the 1-(2-hydroxyphenyl)-3-phenylpropan-1,3-diones were shown by NMR to exist in the enol form. This was supported by the crystal structure of 1-(2-hydroxy-4-methoxyphenyl)-3-phenylpropan-1,3-dione. In contrast, 1.(4,6-dimethoxy-2-hydroxyphenyl)-3-phenylpropan-1,3-dione did not exhibit keto-enol tautomerism in the NMR spectrum and was shown in its crystal structure to assume a twisted conformation. Assessment of the biological activity of the analogues of quercetin was carried out using whole cells and the kinase domain of the tyrosine protein kinase encoded by the Abelson murine leukaemia virus, ptab150 kinase. Single cell suspension cultures and clonogenic potential of murine fibroblasts transformed by the Abelson Murine leukaemia virus (ANN-1 cells) did not indicate the existence of any structure activity relationship required for cytotoxicity or cytostasis. No selective toxicity was apparent when the `normal' parent cell line, (3T3), was used to assess the cytotoxic potential of quercetin. The ICS50 for these compounds were generally in the region of 1-100M. The potential for these compounds to inhibit ptab150 kinase was determined. A definite substitution requirement emerged from these experiments indicating a necessity for substituents in the A ring or in the 3-position of the flavone nucleus. Kinetic data showed these inhibitors to be competitive for ATP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maternal endothelial dysfunction in preeclampsia is associated with increased soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antagonist of vascular endothelial growth factor and placental growth factor. Angiotensin II (Ang II) is a potent vasoconstrictor that increases concomitant with sFlt-1 during pregnancy. Therefore, we speculated that Ang II may promote the expression of sFlt-1 in pregnancy. Here we report that infusion of Ang II significantly increases circulating levels of sFlt-1 in pregnant mice, thereby demonstrating that Ang II is a regulator of sFlt-1 secretion in vivo. Furthermore, Ang II stimulated sFlt-1 production in a dose- and time-dependent manner from human villous explants and cultured trophoblasts but not from endothelial cells, suggesting that trophoblasts are the primary source of sFlt-1 during pregnancy. As expected, Ang II-induced sFlt-1 secretion resulted in the inhibition of endothelial cell migration and in vitro tube formation. In vitro and in vivo studies with losartan, small interfering RNA specific for calcineurin and FK506 demonstrated that Ang II-mediated sFlt-1 release was via Ang II type 1 receptor activation and calcineurin signaling, respectively. These findings reveal a previously unrecognized regulatory role for Ang II on sFlt-1 expression in murine and human pregnancy and suggest that elevated sFlt-1 levels in preeclampsia may be caused by a dysregulation of the local renin/angiotensin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective - Soluble vascular endothelial growth factor receptor–1 (also know as soluble fms-like tyrosine kinase [sFlt]-1) is a key causative factor of preeclampsia. Resveratrol, a plant phytoalexin, has antiinflammatory and cardioprotective properties. We sought to determine the effect of resveratrol on sFlt-1 release. Study Design - Human umbilical vein endothelial cells, transformed human trophoblast-8 (HTR/SVneo)-8/SVneo trophoblast cells, or placental explants were incubated with cytokines and/or resveratrol. Conditioned media were assayed for sFlt-1 by enzyme-linked immunosorbent assay and cell proteins used for Western blotting. Results - Resveratrol inhibited cytokine-induced release of sFlt-1 from normal placental explants and from preeclamptic placental explants. Preincubation of human umbilical vein endothelial cells or HTR-8/SVneo cells with resveratrol abrogated sFlt-1 release. Resveratrol prevented the up-regulation of early growth response protein-1 (Egr-1), a transcription factor necessary for induction of the vascular endothelial growth factor receptor–1 gene and caused up-regulation of heme oxygenase–1, a cytoprotective enzyme found to be dysfunctional in preeclampsia. Conclusion - In summary, resveratrol can inhibit sFlt-1 release and up-regulate heme oxygenase–1; thus, may offer therapeutic potential in preeclampsia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background—Alterations in circulating levels of pro- and antiangiogenic factors have been associated with adverse pregnancy outcomes. Heparin is routinely administered to pregnant women, but without clear knowledge of its impact on these factors. Methods and Results—We conducted a longitudinal study of 42 pregnant women. Twenty-one women received prophylactic heparin anticoagulation, and 21 healthy pregnant women served as controls. Compared with gestational age-matched controls, heparin treatment was associated with increased circulating levels of soluble fms-like tyrosine kinase-1 (sFlt-1) in the third trimester (P<0.05), in the absence of preeclampsia, placental abruption, or fetal growth restriction. Heparin had no effect on circulating levels of vascular endothelial growth factor, placenta growth factor, or soluble endoglin as assessed by ELISA. In vitro, low-molecular weight and unfractionated heparins stimulated sFlt-1 release from placental villous explants, in a dose- and time-dependent manner. This effect was not due to placental apoptosis, necrosis, alteration in protein secretion, or increased transcription. Western blot analysis demonstrated that heparin induced shedding of the N-terminus of Flt-1 both in vivo and in vitro as indicated by a predominant band of 100–112 kDa. By using an in vitro angiogenesis assay, we demonstrated that serum of heparin-treated cases inhibited both basal and vascular endothelial growth factor-induced capillary-like tube formation. Conclusions—Heparin likely increases the maternal sFlt-1 through shedding of the extracellular domain of Flt-1 receptor. Our results imply that upregulation of circulating sFlt-1 immunoreactivity in pregnancy is not always associated with adverse outcomes, and that heparin's protective effects, if any, cannot be explained by promotion of angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT1) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT1 receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT1 receptor to induce sFlt-1 synthesis and secretion by AT1-receptor activating autoantibodies. AT1-receptor activating autoantibody–induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitration of tyrosine in proteins and peptides is a post-translational modification that occurs under conditions of oxidative stress. It is implicated in a variety of medical conditions, including neurodegenerative and cardiovascular diseases. However, monitoring tyrosine nitration and understanding its role in modifying biological function remains a major challenge. In this work, we investigate the use of electron-vibration-vibration (EVV) two-dimensional infrared (2DIR) spectroscopy for the study of tyrosine nitration in model peptides. We demonstrate the ability of EVV 2DIR spectroscopy to differentiate between the neutral and deprotonated states of 3-nitrotyrosine, and we characterize their spectral signatures using information obtained from quantum chemistry calculations and simulated EVV 2DIR spectra. To test the sensitivity of the technique, we use mixed-peptide samples containing various levels of tyrosine nitration, and we use mass spectrometry to independently verify the level of nitration. We conclude that EVV 2DIR spectroscopy is able to provide detailed spectroscopic information on peptide side-chain modifications and to detect nitration levels down to 1%. We further propose that lower nitration levels could be detected by introducing a resonant Raman probe step to increase the detection sensitivity of EVV 2DIR spectroscopy. (Graph Presented).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously identified a phosphorothioate oligonucleotide (PS-ODN) that inhibited epidermal growth factor receptor tyrosine kinase (TK) activity both in cell fractions and in intact A431 cells. Since ODN-based TK inhibitors may have anti-cancer applications and may also help understand the non-antisense mediated effects of PS-ODNs, we have further studied the sequence and chemistry requirements of the parent PS-ODN (sequence: 5′-GGA GGG TCG CAT CGC-3′) as a sequence-dependent TK inhibitor. Sequence deletion and substitution studies revealed that the 5′-terminal GGA GGG hexamer sequence in the parent compound was essential for anti-TK activity in A431 cells. Site-specific substitution of any G with a T in this 5′-terminal motif within the parent compound caused a significant loss in anti-TK activity. The fully PS-modified hexameric motif alone exhibited equipotent activity as the parent 15-mer whereas phosphodiester (PO) or 2′-O-methyl-modified versions of this motif had significantly reduced anti-TK activity. Further, T substitutions within the two 5′-terminal G residues of the hexameric PS-ODN to produce a sequence, TTA GGG, representing the telomeric repeats in human chromosomes, also did not exhibit a significant anti-TK activity. Multiple repeats of the active hexameric motif in PS-ODNs resulted in more potent inhibitors of TK activity than the parent ODN. These results suggested that PS-ODNs, but not PO or 2′-O-methyl modified ODNs, containing the GGA GGG motif can exert potent anti-TK activity which may be desirable in some anti-tumor applications. Additionally, the presence of this previously unidentified motif in antisense PS-ODN constructs may contribute to their biological effects in vitro and in vivo and should be accounted for in the design of the PS-modified antisense ODNs. © 2002 Published by Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein oxidation is increasingly recognised as an important modulator of biochemical pathways controlling both physiological and pathological processes. While much attention has focused on cysteine modifications in reversible redox signalling, there is increasing evidence that other protein residues are oxidised in vivo with impact on cellular homeostasis and redox signalling pathways. A notable example is tyrosine, which can undergo a number of oxidative post-translational modifications to form 3-hydroxy-tyrosine, tyrosine crosslinks, 3-nitrotyrosine and halogenated tyrosine, with different effects on cellular functions. Tyrosine oxidation has been studied extensively in vitro, and this has generated detailed information about the molecular mechanisms that may occur in vivo. An important aspect of studying tyrosine oxidation both in vitro and in biological systems is the ability to monitor the formation of oxidised derivatives, which depends on a variety of analytical techniques. While antibody-dependent techniques such as ELISAs are commonly used, these have limitations, and more specific assays based on spectroscopic or spectrometric techniques are required to provide information on the exact residues modified and the nature of the modification. These approaches have helped understanding of the consequences of tyrosine oxidation in biological systems, especially its effects on cell signalling and cell dysfunction, linking to roles in disease. There is mounting evidence that tyrosine oxidation processes are important in vivo and can contribute to cellular pathology.