28 resultados para Sludge disposal

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study attempted to identify the significant parameters which affect radionuclide migration from a low level radioactive waste disposal site located in a clay deposit. From initial sorption studies on smectite minerals, increased Kd with decreasing initial cation concentration was observed, and three sorption mechanisms were identified. The observation of anion dependent sorption was related to the existence of a mechanism in which an anion-cation pair are bound to the clay surface through the anion. The influence of competing cations, typical of inorganic groundwater constituents, depended on: (1) Ni/Co:Mn+(Mn+ = competing cation) ratio, (2) nature of M^n+, (3) total solution ionic strength. The presence of organic material in groundwater is well documented, but its effect on cation sorption has not been established. An initial qualitative investigation involving addition of simple organic ligands to Ni(Co)-hectorite samples demonstrated the formation of metal complexes in the clay interlayers, although some modified behaviour was observed. Further quantitative examination involving likely groundwater organic constituents and more comprehensive physical investigation confirmed this behaviour and enabled separation of the organic compounds used into two classes, according to their effect on cation sorption; (i) acids, (ii) amine compounds. X-ray photoelectron spectroscopy, scanning electron microscopy and Mossbauer spectroscopy were used to investigate the nature of transition metal ions sorbed onto montmorillonite and hectorite. Evidence strongly favoured the sorption of the hexaaquo cation, although a series of sorption sites of slightly different chemical characteristics were responsible for broadened peak widths observed in XPS and Mossbauer investigations. The surface sensitivity of XPS enabled recognition of the two surface sorption sites proposed in earlier sorption studies. Although thermal treatment of Fe^3+/Fe^2+-hectorite samples left iron atoms bonded to the silicate sheet structure, Mossbauer evidence indicated the presence of both ferric and ferrous iron in all samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many local authorities (LAs) are currently working to reduce both greenhouse gas emissions and the amount of municipal solid waste (MSW) sent to landfill. The recovery of energy from waste (EfW) can assist in meeting both of these objectives. The choice of an EfW policy combines spatial and non-spatial decisions which may be handled using Multi-Criteria Analysis (MCA) and Geographic Information Systems (GIS). This paper addresses the impact of transporting MSW to EfW facilities, analysed as part of a larger decision support system designed to make an overall policy assessment of centralised (large-scale) and distributed (local-scale) approaches. Custom-written ArcMap extensions are used to compare centralised versus distributed approaches, using shortest-path routing based on expected road speed. Results are intersected with 1-kilometre grids and census geographies for meaningful maps of cumulative impact. Case studies are described for two counties in the United Kingdom (UK); Cornwall and Warwickshire. For both case study areas, centralised scenarios generate more traffic, fuel costs and emitted carbon per tonne of MSW processed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of effluents produced during the manufacture of metallurgical coke is normally carried out using the activated sludge process. The efficiency of activated sludges in purifying coke oven effluent depends largely on the maintenance of species of micro-organisms which destroy thiocyanate. The composition, production, toxicity and treatment of coke oven effluent at Corby steelworks are described. A review is presented which follows the progress made towards identifying and monitoring the species of bacteria which destroy thiocyanate in biological treatment plants purifying coke oven effluents. In the present study a search for bacteria capable of destroying thiocyanate led to the isolation of a species of bacteria, identified as Pseudomonas putida, which destroyed thiocyanate in the presence of succinate; this species had not previously been reported to use thiocyanate. Washed cell suspensions of P. putida destroyed phenol and thiocyanate simultaneously and thiocyanate destruction was not suppressed by pyridine, aniline or catechol at the highest concentrations normally encountered in coke oven effluent. The isolate has been included, as N.C.I.B. 11198, in the National Collection of Industrial Bacteria, Torrey Research Station, Aberdeen. Three other isolates, identified as Achromobacter sp., Thiobacillus thioparus and T. denitrificans, were also confirmed to destroy thi.ocyanate. A technique has been developed for monitoring populations of different species of bacteria in activated sludges. Application of this technique to laboratory scale and full scale treatment plants at Corby showed that thiobacilli were usually not detected; thiobacilli were el~inated during the commissioning period of the full scale plant. However experiments using a laboratory scale plant indicated that during a period of three weeks an increase in the numbers of thiobacilli might have contributed to an improvement in plant performance. Factors which might have facilitated the development of thiobacilli are discussed. Large numbers of fluorescent pseudomonads capable of using thiocyanate were sometimes detected in the laboratory scale plant. The possibility is considered that catechol or other organic compounds in the feed-liquor might have stimulated fluorescent pseudmonads. Experiments using the laboratory scale plant confirmed that deteriorations in the efficiency of thiocyanate destruction were sometimes caused by bulking sludges, due to the excessive growth of fungal floes. Increased dilution of the coke oven effluent was a successful remedy to this difficulty. The optimum operating conditions recommended by the manufacturer of the full scale activated sludge plant at Corby are assessed and the role of bacterial monitoring in a programme of regular monitoring tests is discussed in relation to the operation of activated sludge plants treating coke oven effluents.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an Inter-Disciplinary Higher Degree (IHD) thesis about Water Pollution Control in the Iron and Steel Industry. After examining the compositions, and various treatment methods, for the major effluent streams from a typical Integrated Iron and Steel works, it was decided to concentrate investigative work on the activated-sludge treatment of coke-oven effluents. A mathematical model of this process was developed in an attempt to provide a tool for plant management that would enable improved performance, and enhanced control of Works Units. The model differs from conventional models in that allowance is made for the presence of two genera of microorganisms, each of which utilises a particular type of substrate as its energy source. Allowance is also made for the inhibitive effect of phenol on thiocyanate biodegradation, and for the self-toxicity of the bacteria when present in a high substrate concentration environment. The enumeration of the kinetic characteristics of the two groups of micro-organisms was shown to be of major importance. Laboratory experiments were instigated in an attempt to determine accurate values of these coefficients. The use of the Suspended Solids concentration was found to be too insensitive a measure of viable active mass. Other measures were investigated, and Adenosine Triphosphate concentration was chosen as the most effective measure of bacterial populations. Using this measure, a model was developed for phenol biodegradation from experimental results which implicated the possibility of storage of substate prior to metabolism. A model for thiocyanate biodegradation was also developed, although the experimental results indicate that much work is still required in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coke oven liquor is a toxic wastewater produced in large quantities by the Iron and Steel, and Coking Industries, and gives rise to major effluent treatment problems in those industries. Conscious of the potentially serious environmental impact of the discharge of such wastes, pollution control agencies in many countries have made progressively more stringent quality requirements for the discharge of the treated waste. The most common means of treating the waste is the activated sludge process. Problems with achieving consistently satisfactory treatment by this process have been experienced in the past. The need to improve the quality of the discharge of the treated waste prompted attempts by TOMLINS to model the process using Adenosine Triphosophnte (ATP) as a measure of biomass, but these were unsuccessful. This thesis describes work that was carried out to determine the significance of ATP in the activated sludge treatment of the waste. The use of ATP measurements in wastewater treatment were reviewed. Investigations were conducted into the ATP behaviour of the batch activated sludge treatment of two major components of the waste, phenol, and thiocyanate, and the continuous activated sludge treatment of the liquor itself, using laboratory scale apparatus. On the basis of these results equations were formulated to describe the significance of ATP as a measured activity and biomass in the treatment system. These were used as the basis for proposals to use ATP as a control parameter in the activated sludge treatment of coke oven liquor, and wastewaters in general. These had relevance both to the treatment of the waste in the reactor and to the settlement of the sludge produced in the secondary settlement stage of the treatment process.