8 resultados para Promoter Regions, Genetic

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The imidazotetrazinones are clinically active antitumour agents, temozolomide currently proving successful in the treatment of melanomas and gliomas. The exact nature of the biological processes underlying response are as yet unclear.This thesis attempts to identify the cellular targets important to the cytotoxicity of imidazotetrazinones, to elucidate the pathways by which this damage leads to cell death, and to identify mechanisms by which tumour cells may circumvent this action. The levels of the DNA repair enzymes O6-alkylguanine-DNA-alkyltransferase (O6-AGAT) and 3-methyladenine-DNA-glycosylase (3MAG) have been examined in a range of murine and human cell lines with differential sensitivity to temozolomide. All the cell lines were proficient in 3MAG despite there being 40-fold difference in sensitivity to temozolomide. This suggests that while 3-methyladenine is a major product of temozolomide alkylation of DNA it is unlikely to be a cytotoxic lesion. In contrast, there was a 20-fold variation in O6-AGAT levels and the concentration of this repair enzyme correlated with variations in cytotoxicity. Furthermore, depletion of this enzyme in a resistant, O6-AGAT proficient cell line (Raji), by pre-treatment with the free base O6-methylguanine resulted in 54% sensitisation to the effects of temozolomide. These observations have been extended to 3 glioma cell lines; results that support the view that the cytotoxicity of temozolomide is related to alkylation at the O6-position of guanine and that resistance to this drug is determined by efficient repair of this lesion. It is clear, however, the other factors may influence tumour response since temozolomide showed little differential activity towards 3 established solid murine tumours in vivo, despite different tumour O6-AGAT levels. Unlike mitozolomide, temozolomide is incapable of cross-linking DNA and a mechanism by which O6-methylguanine may exert lethality is unclear. The cytotoxicity of the methyl group may be due to its disruption of DNA-protein interactions, or alternatively cell death may not be a direct result of the alkyl group itself, but manifested by DNA single-strand breaks. Enhanced alkaline elution rates were found for the DNA of Raji cells treated with temozolomide following alkyltransferase depletion, suggesting a relationship between O6-methylguanine and the induction single-strand breaks. Such breaks can activate poly(ADP-ribose) synthetase (ADPRT) an enzyme capable of rapid and lethal depletion of cellular NAD levels. However, at concentrations of temozolomlde relevant in vivo little change in adenine nucleotides was detected in cell lines, although this enzyme would appear important in modulating DNA repair since inhibition of ADPRT potentiated temozolomide cytotoxicity in Raji cells but not O6-AGAT deficient GM892A cells. Cell lines have been reported that are O6-AGAT deficient yet resistant to methylating agents. Thus, resistance to temozolomide may arise not only by removal of the methyl group from the O6-position of guanine, but also from another mechanism involving caffeine-sensitive post-replication repair or mismatch repair activity. A modification of the standard Maxam Gilbert sequencing technique was used to determine the sequence specificity of guanine-N7 alkylation. Temozolomide preferentially alkylated runs of guanines with the intensity of reaction increasing with the number of adjacent guanines in the DNA sequence. Comparable results were obtained with a polymerase-stop assay, although neither technique elucidates the sequence specificity of O6-guanine alkylation. The importance of such specificity to cytotoxicity is uncertain, although guanine-rich sequences are common to the promoter regions of oncogenes. Expression of a plasmid reporter gene under the control of the Ha-ras proto~oncogene promoter was inhibited by alkylation with temozolomide when transfected into cancer cell lines, However, this inhibition did not appear to be related to O6~guanine alkylation and therefore would seem unimportant to the chemotherapeutic activity of temozolomide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA methylation appears to be involved in the regulation of gene expression. Transcriptionally inactive (silenced) genes normally contain a high proportion of 5-methyl-2'-deoxycytosine residues whereas transcriptionally active genes show much reduced levels. There appears good reason to believe that chemical agents capable of methylating 2'-deoxycytosine might affect gene expression and as a result of hypermethylating promoter regions of cytosine-guanine rich oncogenic sequences, cancer related genes may be silenced. This thesis describes the synthesis of a number of `electrophilic' S-methylsulphonium compounds and assesses their ability to act as molecules capable of methylating cytosine at position 5 and also considers their potential as cytotoxic agents. DNA is methylated in vivo by DNA methyltransferase utilising S-adenoxylmethionine as the methyl donor. This thesis addresses the theory that S-adenoxylmethionine may be replaced as the methyl donor for DNA methytransferase by other sulphonium compounds. S-[3H-methyl]methionine sulphonium iodide was synthesised and experiments to assess the ability of this compounds to transfer methyl groups to cytosine in the presence of DNA methyltransferase were unsuccessful. A proline residue adjacent to a cysteine residue has been identified to a highly conserved feature of the active site region of a large number of prokaryotic DNA methyltransferases. The thesis examines the possibility that short peptides containing the Pro-Cys fragment may be able to facilitate the alkylation of cytosine position 5 by sulphonium compounds. Peptides were synthesised up to 9 amino acids in length but none were shown to exhibit significant activity. Molecular modelling techniques, including Chem-X, Quanta, BIPED and protein structure prediction programs were used to assess any structural similarities that may exist between short peptides containing a Pro-Cys fragment and similar sequences present in proteins. A number of similar structural features were observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaporins and aquaglyceroporins mediate the transport of water and solutes across biological membranes. Saccharomyces cerevisiae Fps1 is an aquaglyceroporin that mediates controlled glycerol export during osmoregulation. The transport function of Fps1 is rapidly regulated by osmotic changes in an apparently unique way and distinct regions within the long N- and C-terminal extensions are needed for this regulation. In order to learn more about the mechanisms that control Fps1 we have set up a genetic screen for hyperactive Fps1 and isolated mutations in 14 distinct residues, all facing the inside of the cell. Five of the residues lie within the previously characterized N-terminal regulatory domain and two mutations are located within the approach to the first transmembrane domain. Three mutations cause truncation of the C-terminus, confirming previous studies on the importance of this region for channel control. Furthermore, the novel mutations identify two conserved residues in the channel-forming B-loop as critical for channel control. Structural modelling-based rationalization of the observed mutations supports the notion that the N-terminal regulatory domain and the B-loop could interact in channel control. Our findings provide a framework for further genetic and structural analysis to better understand the mechanism that controls Fps1 function by osmotic changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continental red bed sequences are host, on a worldwide scale, to a characteristic style of mineralisation which is dominated by copper, lead, zinc, uranium and vanadium. This study examines the features of sediment-hosted ore deposits in the Permo-Triassic basins of Western Europe, with particular reference to the Cu-Pb-Zn-Ba mineralisation in the Cheshire Basin, northwest England, the Pb-Ba-F deposits of the Inner Moray Firth Basin, northeast Scotland, and the Pb-rich deposits of the Eifel and Oberpfalz regions, West Germany. The deposits occur primarily but not exclusively in fluvial and aeolian sandstones on the margins of deep, avolcanic sedimentary basins containing red beds, evaporites and occasionally hydrocarbons. The host sediments range in age from Permian to Rhaetian and often contain (or can be inferred to have originally contained) organic matter. Textural studies have shown that early diagenetic quartz overgrowths precede the main episode of sulphide deposition. Fluid inclusion and sulphur isotope data have significantly constrained the genetic hypotheses for the mineralisation and a model involving the expulsion of diagenetic fluids and basinal brines up the faulted margins of sedimentary basins is favoured. Consideration of the development of these sedimentary basins suggests that ore emplacement occurred during the tectonic stage of basin evolution or during basin inversion in the Tertiary. ð34S values for barite in the Cheshire Basin range from 13.8% to 19.3% and support the theory that the Upper Triassic evaporites were the principal sulphur source for the mineralisation and provided the means by which mineralising fluids became saline. In contrast, δ34S values for barite in the Inner Moray Firth Basin (mean δ34S = + 29%) are not consistent with simple derivation of sulphur from the evaporite horizons in the basin and it is likely that sulphur-rich Jurassic shales supplied the sulphur for the mineralisation at Elgin. Possible sources of sulphur for the mineralisation in West Germany include hydrothermal vein sulphides in the underlying Devonian sediments and evaporites in the overlying Muschelkalk. Textural studies of the deeply buried sandstones in the Cheshire Basin reveal widespread dissolution and replacement of detrital phases and support the theory that red bed diagenetic processes are responsible for the release of metals into pore fluids. The ore solutions are envisaged as being warm (60-150%C), saline (9-22 wt % equiv NaCl) fluids in which metals were transported as chloride complexes. The distribution of δ34S values for sulphides in the Cheshire Basin (-1.8% to + 16%), the Moray Firth Basin (-4.8% to + 27%) and the German Permo-Triassic Basins (-22.2% to -12.2%) preclude a magmatic source for the sulphides and support the contention that sulphide precipitation is thought to result principally from sulphate reduction processes, although a decrease in temperature of the ore fluid or reaction with carbonates may also be important. Methane is invoked as the principal reducing agent in the Cheshire Basin, whilst terrestrial organic debris and bacterial reduction processes are thought to have played a major part in the genesis of the German ore deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background - The PCK1 gene, encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCKC), has previously been implicated as a candidate gene for type 2 diabetes (T2D) susceptibility. Rodent models demonstrate that over-expression of Pck1 can result in T2D development and a single nucleotide polymorphism (SNP) in the promoter region of human PCK1 (-232C/G) has exhibited significant association with the disease in several cohorts. Within the UK-resident South Asian population, T2D is 4 to 6 times more common than in indigenous white Caucasians. Despite this, few studies have reported on the genetic susceptibility to T2D in this ethnic group and none of these has investigated the possible effect of PCK1 variants. We therefore aimed to investigate the association between common variants of the PCK1 gene and T2D in a UK-resident South Asian population of Punjabi ancestry, originating predominantly from the Mirpur area of Azad Kashmir, Pakistan. Methods - We used TaqMan assays to genotype five tagSNPs covering the PCK1 gene, including the -232C/G variant, in 903 subjects with T2D and 471 normoglycaemic controls. Results - Of the variants studied, only the minor allele (G) of the -232C/G SNP demonstrated a significant association with T2D, displaying an OR of 1.21 (95% CI: 1.03 - 1.42, p = 0.019). Conclusion - This study is the first to investigate the association between variants of the PCK1 gene and T2D in South Asians. Our results suggest that the -232C/G promoter polymorphism confers susceptibility to T2D in this ethnic group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Investigating genetic modulation of emotion processing may contribute to the understanding of heritable mechanisms of emotional disorders. The aim of the present study was to test the effects of catechol- O-methyltransferase (COMT) val158met and serotonin-transporter-linked promoter region (5-HTTLPR) polymorphisms on facial emotion processing in healthy individuals. Methods: Two hundred and seventy five (167 female) participants were asked to complete a computerized facial affect recognition task, which involved four experimental conditions, each containing one type of emotional face (fearful, angry, sad or happy) intermixed with neutral faces. Participants were asked to indicate whether the face displayed an emotion or was neutral. The COMT-val158met and 5-HTTLPR polymorphisms were genotyped. Results: Met homozygotes (COMT) showed a stronger bias to perceive neutral faces as expressions of anger, compared with val homozygotes. However, the S-homozygotes (5-HTTLPR) showed a reduced bias to perceive neutral faces as expressions of happiness, compared to L-homozygotes. No interaction between 5-HTTLPR and COMT was found. Conclusions: These results add to the knowledge of individual differences in social cognition that are modulated via serotonergic and dopaminergic systems. This potentially could contribute to the understanding of the mechanisms of susceptibility to emotional disorders. © 2013 Elsevier Masson SAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four bar mechanisms are basic components of many important mechanical devices. The kinematic synthesis of four bar mechanisms is a difficult design problem. A novel method that combines the genetic programming and decision tree learning methods is presented. We give a structural description for the class of mechanisms that produce desired coupler curves. Constructive induction is used to find and characterize feasible regions of the design space. Decision trees constitute the learning engine, and the new features are created by genetic programming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently reported the association of the PCSK6 gene with handedness through a quantitative genome-wide association study (GWAS; P < 0.5 × 10(-8)) for a relative hand skill measure in individuals with dyslexia. PCSK6 activates Nodal, a morphogen involved in regulating left-right body axis determination. Therefore, the GWAS data suggest that the biology underlying the patterning of structural asymmetries may also contribute to behavioural laterality, e.g. handedness. The association is further supported by an independent study reporting a variable number tandem repeat (VNTR) within the same PCSK6 locus to be associated with degree of handedness in a general population cohort. Here, we have conducted a functional analysis of the PCSK6 locus combining further genetic analysis, in silico predictions and molecular assays. We have shown that the previous GWAS signal was not tagging a VNTR effect, suggesting that the two markers have independent effects. We demonstrated experimentally that one of the top GWAS-associated markers, rs11855145, directly alters the binding site for a nuclear factor. Furthermore, we have shown that the predicted regulatory region adjacent to rs11855415 acts as a bidirectional promoter controlling the expression of novel RNA transcripts. These include both an antisense long non-coding RNA (lncRNA) and a short PCSK6 isoform predicted to be coding. This is the first molecular characterization of a handedness-associated locus that supports the role of common variants in non-coding sequences in influencing complex phenotypes through gene expression regulation.