3 resultados para PSMA PET

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this work was two fold, firstly to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigon ox 101, Tl 01) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with increasing the DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. Compared to a conventional EPR-g-GMACONV (in the absence of a comonomer), the presence of the comonomer DVB in the grafting system was shown to result in more branching and crosslinking (shown from an increase in melt flow index (MFI) and torque values) and this was paralleled by an increase in DVB concentration. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this. reflects that the side reactions were favorable in the conventional grafting system. The second aim was to examine the effect of the in-situ functionalised EPR when used as a compatibiliser for binary blends. It was found that blending PET with functionalised EPR (ƒ-EPR) gave a significant improvement in terms of blend morphology as well as mechanical properties. The results showed clearly that, blending PET with ƒ-EPRDVB (prepared with DVB) was much more effective compared to the corresponding PET/ƒ-EPRCONV (without DVB) blends in which ƒ-EPRDVB having optimum grafting level of 2.1 wt% gave the most pronounced effect on the morphology and mechanical properties. On the other hand, blends of PET/ƒ-EPRDVB containing high GMA/DVB ratio was found to be unfavorable hence exhibited lower tensile properties and showed unfavorable morphology. The presence of high polyGMA concentration in ƒ-EPRCONV was found to create damaging effect on its morphology, hence resulting in reduced tensile properties (e.g. low elongation at break). However, the use of commercial terpolymers based on ethylene-methacrylate-glycidyl methacrylate (EM-GMA)or a copolymer of ethylene-glycidyl methacrylate (E-GMA) containing various GMA levels as compatibilisers in PET/EPR blends was found to be more efficient compared to PET/EPR/ƒ-EPR blends with the former blends showing finer morphology and high elongation at break. The high efficiency of the terpolymers or copolymers in compatibilising the PET/EPR blends is suggested to be partly, higher GMA content compared to the amount in ƒ-EPR and due to its low viscosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [18F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for 18F-fluoride and 100% for 64Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of 18F from NPs, but no sign of efflux of 64Cu. © 2014 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of PET with the different commercial co(ter)polymer compatibilisers were prepared and the effect of their glycidyl methacrylate (GMA) content and viscosity on the blend properties was determined. The efficiency of compatibilisation of the commercial co(ter)polymer in the ternary blends was examined and compared. For all the ternary blends (PET/EPR/co(ter)polymer, the PET content was fixed at 70 wt% of the total weight of the blends. Higher compatibilisation effect was found in PET/EPR blends compatibilised with the commercial copolymer ethylene glycidyl methacrylate (E-GMA8(5)) containing 8% GMA and MFI = 5 (g/10min) was achieved as reflected in the observed higher elongation at break when compared to corresponding blends compatibilised with the methyl acrylate containing terpolymer ethylene methyl acrylate glycidyl methacrylate EM-GMA8(6) containing 8% GMA and MFI = 6 (g/10min). The presence of methyl acrylate ester groups in the commercial terpolymer EM-GMA (containing similar amount of GMA and same MFI) resulted in low level of compatibilisation due to the possibility of a higher extent of branching and crosslinking resulting from the presence of the ester groups and this would be responsible for the observed lower elongation, and the less favourable morphology observed. Further, the more bulky structure of the terpolymer compared to the copolymer would give rise to a more difficult migration to the interface, thus lowering the efficiency of compatibilisation. However, the morphology of both blends compatibilised with either the terpolymer or the copolymer were not significantly different.