17 resultados para New drugs

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral therapy for type 2 diabetes mellitus, when used appropriately, can safely assist patients to achieve glycaemic targets in the short to medium term. However, the progressive nature of type 2 diabetes usually requires a combination of two or more oral agents in the longer term, often as a prelude to insulin therapy. Issues of safety and tolerability, notably weight gain, often limit the optimal application of anti-diabetic drugs such as sulforylureas and thiazolidinediones. Moreover, the impact of different drugs, even within a single class, on the risk of long-term vascular complications has come under scrutiny. For example, recent publication of evidence suggesting potential detrimental effects of rosiglitazone on myocardial events generated a heated debate and led to a reduction in use of this drug. In contrast, current evidence supports the view that pioglitazone has vasculoprotective properties. Both drugs are contraindicated in patients who are at risk of heart failure. An additional recently identified safety concern is an increased risk of fractures, especially in postmenopausal women. Several new drugs with glucose-lowering efficacy that may offer certain advantages have recently become available. These include (i) injectable glucagonlike peptide-1 (GLP-1) receptor agonists and oral dipeptidyl peptidase-4 (DPP-4) inhibitors; (ii) the amylin analogue pramlintide; and (iii) selective cannabinoid receptor-1 (CB1) antagonists. GLP-1 receptor agonists, such as exenatide, stimulate nutrient-induced insulin secretion and reduce inappropriate glucagon secretion while delaying gastric emptying and reducing appetite. These agents offer a low risk of hypoglycaemia combined with sustained weight loss. The DPP-4 inhibitors sitagliptin and vildagliptin are generally weight neutral, with less marked gastrointestinal adverse effects than the GLP-1 receptor agonists. Potential benefits of GLP-1 receptor stimulation on P cell neogenesis are under investigation. Pancreatitis has been reported in exenatide-treated patients. Pramlintide, an injected peptide used in combination with insulin, can reduce insulin dose and bodyweight. The CB1 receptor antagonist rimonabant promotes weight loss and has favourable effects on aspects of the metabolic syndrome, including the hyperglycaemia of type 2 diabetes. However, in 2007 the US FDA declined approval of rimonabant, requiring more data on adverse effects, notably depression. The future of dual peroxisome proliferator-activated receptor-alpha/gamma agonists, or glitazars, is presently uncertain following concerns about their safety. In conclusion, several new classes of drugs have recently become available in some countries that offer new options for treating type 2 diabetes. Beneficial or neutral effects on bodyweight are an attractive feature of the new drugs. However, the higher cost of these agents, coupled with an absence of long-term safety and clinical outcome data, need to be taken into consideration by clinicians and healthcare organizations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using prescription analyses and questionnaires, the way drug information was used by general medical practitioners during the drug adoption process was studied. Three new drugs were considered; an innovation and two 'me-too' products. The innovation was accepted by general practitioners via a contagion process, information passing among doctors. The 'me-too' preparations were accepted more slowly and by a process which did not include the contagion effect. 'Industrial' information such as direct mail was used more at the 'awareness' stage of the adoption process while 'professional' sources of information such as articles in medical journals were used more to evaluate a new product. It was shown that 'industrial' information was preferred by older single practice doctors who did not specialise, had a first degree only and who did not dispense their own prescriptions. Doctors were divided into early and late-prescribers by using the date they first prescribed the innovatory drug. Their approach to drug information sources was further studied and it was shown that the early-prescriber issued slightly more prescriptions per month, had a larger list size, read fewer journals and generally rated industrial sources of information more highly than late-prescribers. The prescribing habits of three consultant rheumatologists were analysed and compared with those of the general practitioners in the community which they served. Very little association was noted and the influence of the consultant on the prescribing habits of general practitioners was concluded to be low. The consultants influence was suggested to be of two components, active and passive; the active component being the most influential. Journal advertising and advertisement placement were studied for one of the 'me-too' drugs. It was concluded that advertisement placement should be based on the reading patterns of general practitioners and not on ad-hoc data gathered by representatives as was the present practice. A model was proposed relating the 'time to prescribe' a new drug to the variables suggested throughout this work. Four of these variables were shown to be significant. These were, the list size, the medical age of the prescriber, the number of new preparations prescribed in a given time and the number of partners in the practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Membrane proteins are drug targets for a wide range of diseases. Having access to appropriate samples for further research underpins the pharmaceutical industry's strategy for developing new drugs. This is typically achieved by synthesizing a protein of interest in host cells that can be cultured on a large scale, allowing the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to that of the native human source cells of many proteins of interest, while also being quick, easy and cheap to grow and process. Even in these cells, the production of human membrane proteins can be plagued by low functional yields; we wish to understand why. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast host strains. By relieving the bottlenecks to recombinant membrane protein production in yeast, we aim to contribute to the drug discovery pipeline, while providing insight into translational processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypercoiling poly(styrene-alt-maleic anhydride) (PSMA) is known to undergo conformational transition in response to environmental stimuli. The association of PSMA with lipid 2-dilauryl-sn-glycero-3-phosphocholine (DLPC) produces polymer-lipid complex analogues to lipoprotein assemblies found in lung surfactant. These complexes represent a new bio-mimetic delivery vehicle with applications in the cosmetic and pharmaceutical industries. The primary aim of this study was to develop a better understanding of PSMA-DLPC association by using physical and spectroscopic techniques. Ternary phase diagrams were constructed to examine the effects of various factors, such as molecular weight, pH and temperature on PSMA-DLPC association. 31P-NMR spectroscopy was used to investigate the polymorphic changes of DLPC upon associating with PSMA. The Langmuir Trough technique and surface tension measurement were used to explore the association behaviour of PSMA both at the interface and in the bulk of solution, as well as its interaction with DLPC membranes. The ultimate aim of this study was to investigate the potential use of PSMA-DLPC complexes to improve the bioavailability and therapeutic efficacy of a range of drugs. Typical compounds of ophthalmic interest range from new drugs such as Pirenzepine, which has attracted clinical interest for the control of myopia progression, to the well-established family of non-steroid anti-inflammatory drugs. These drugs have widely differing structures, sizes, solubility profiles and pH-sensitivities. In order to understand the ways in which these characteristics influence incorporation and release behaviour, the marker molecules Rhodamine B and Oil Red O were chosen. PSMA-DLPC complexes, incorporated with marker molecules and Pirenzepine, were encapsulated in hydrogels of the types used for soft contact lenses. Release studies were conducted to examine if this smart drug delivery system can retain such compounds and deliver them at a slow rate over a prolonged period of time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examines the invention, innovation, introduction and use of a new drug therapy for coronary heart disease and hypertension; beta-blockade. The relationships between drug introductions and changes in medical perceptions of disease are analysed, and the development and effects of our perception of heart disease through drug treatments and diagnostic technology is described. The first section looks at the evolution of hypertension from its origin as a kidney disorder, Bright's disease, to the introduction and use of effective drugs for its treatment. It is shown that this has been greatly influenced by the introduction of new medical technologies. A medical controversy over its nature is shown both to be strongly influenced by the use of new drugs, and to influence their subsequent use. The second section reviews the literature analysing drug innovation, and examines the innovation of the beta-blocking drugs, making extensive use of participant accounts. The way in which the development of receptor theory, the theoretical basis of the innovation,was influenced by the innovation and use of drugs is discussed, then the innovation at ICI, the introduction into clinical use, and the production of similar drugs by other manufacturers are described. A study of the effects of these drugs is then undertaken, concentrating on therapeutic costs and benefits, and changes in medical perceptions of disease. The third section analyses the effects of other drugs on heart disease, looking at changes in mortality statistics and in medical opinions. The study concludes that linking work on drug innovation with that on drug effects is fruitful, that new drugs and diagnostic technology have greatly influenced medical perceptions of the nature and extent of heart disease, and that in hypertension, the improvement in drug treatment will soon result in much of the population being defined as in need of it life-long.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metformin may play in important role in the future in helping to prevent the development of diabetes: it is a strong candidate therapy for delaying the onset of the disease and potentially as part of a treatment programme to correct features of the metabolic syndrome. This book celebrates 50 years of research into metformin and its use in the treatment of diabetes. Metformin is still the drug of choice for managing patients with type 2 diabetes and all new drugs are tested in comparison with this, the gold standard. Comprising seven sections, addressing different aspects of research on metformin and its applications, this book is edited by a world class team of expert diabetologists and beautifully presented in two colour throughout. It also includes a bibliography of all papers published on metformin and a complete list of all authors on those papers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis (TB), an infection caused by human pathogen Mycobacterium tuberculosis, continues to kill millions each year and is as prevalent as it was in the pre-antimicrobial era. With the emergence of continuously-evolving multi-drug resistant strains (MDR) and the implications of the HIV epidemic, it is crucial that new drugs with better efficacy and affordable cost are developed to treat TB. With this in mind, the first part of this thesis discusses the synthesis of libraries of derivatives of pyridine carboxamidrazones, along with cyclised (1,2,4-triazole and 1,2,4-oxadiazole) and fluorinated analogues. Microbiological screening against M. tuberculosis was carried out at the TAACF, NIAID and IDRI (USA). This confirmed the earlier findings that 2-pyridyl-substituted carboxamidrazones were more active than the 4-pyridyl-substituted carboxamidrazones. Another important observation was that upon cyclisation of these carboxamidrazones, a small number of the triazoles retained their activity while in most of the remaining compounds the activity was diminished. This might be attributed to the significant increase in logP value caused by cyclisation of these linear carboxamidrazones, resulting in high lipophilicity and decreased permeability. Another reason might be that the rigidity conferred upon the compound due to cyclisation, results in failure of the compound to fit into the active site of the putative target enzyme. In order to investigate the potential change to the compounds’ metabolism in the organism and/or host, the most active compounds were selected and a fluorine atom was introduced in the pyridine ring. The microbiological results shows a drastic improvement in the activity of the fluorinated carboxamidrazone amides as compared to their non fluorinated counterpart. This improvement in the activity could possibly be the result of the increased cell permeability caused by the fluorine. In a subsidiary strand, a selection of long-chain , -unsaturated carboxylic esters, -keto, -hydroxy carboxylic esters and -keto, -hydroxy carboxylic esters, structurally similar to mycolic acids, were synthesised. The microbiological data revealed that one of the open chain compound was active against the Mycobacterium tuberculosis H37Rv strain and some resistant isolates. The possible compound activity could be its potential to disrupt mycobacterial cell wall synthesis by interfering with the FAS-II pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multivariable and progressive natural history of type 2 diabetes limits the effectiveness of available glucose-lowering drugs. Constraints imposed by comorbidities (notably cardiovascular disease and renal impairment) and the need to avoid hypoglycaemia, weight gain, and drug interactions further complicate the treatment process. These challenges have prompted the development of new formulations and delivery methods for existing drugs alongside research into novel pharmacological entities. Advances in incretin-based therapies include a miniature implantable osmotic pump to give continuous delivery of a glucagon-like peptide-1 receptor agonist for 6-12 months and once-weekly tablets of dipeptidyl peptidase-4 inhibitors. Hybrid molecules that combine the properties of selected incretins and other peptides are at early stages of development, and proof of concept has been shown for small non-peptide molecules to activate glucagon-like peptide-1 receptors. Additional sodium-glucose co-transporter inhibitors are progressing in development as well as possible new insulin-releasing biological agents and small-molecule inhibitors of glucagon action. Adiponectin receptor agonists, selective peroxisome proliferator-activated receptor modulators, cellular glucocorticoid inhibitors, and analogues of fibroblast growth factor 21 are being considered as potential new approaches to glucose lowering. Compounds that can enhance insulin receptor and post-receptor signalling cascades or directly promote selected pathways of glucose metabolism have suggested opportunities for future treatments. However, pharmacological interventions that are able to restore normal β-cell function and β-cell mass, normalise insulin action, and fully correct glucose homoeostasis are a distant vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeting of drugs and therapies locally to the esophagus is an important objective in the development of new and more effective dosage forms. Therapies that are retained within the oral cavity for both local and systemic action have been utilized for many years, although delivery to the esophagus has been far less reported. Esophageal disease states, including infections, motility disorders, gastric reflux, and cancers, would all benefit from localized drug delivery. Therefore, research in this area provides significant opportunities. The key limitation to effective drug delivery within the esophagus is sufficient retention at this site coupled with activity profiles to correspond with these retention times; therefore, a suitable formulation needs to provide the drug in a ready-to-work form at the site of action during the rapid transit through this organ. A successfully designed esophageal-targeted system can overcome these obstacles. This review presents a range of dosage form approaches for targeting the esophagus, including bioadhesive liquids and orally retained lozenges, chewing gums, gels, and films, as well as endoscopically delivered therapeutics. The techniques used to measure efficacy both in vitro and in vivo are also discussed. Drug delivery is a growing driver within the pharmaceutical industry and offers benefits both in terms of clinical efficacy, as well as in market positioning, as a means of extending a drug's exclusivity and profitability. Emerging systems that can be used to target the esophagus are reported within this review, as well as the potential of alternative formulations that offer benefits in this exciting area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human arythrocytes were used as a model system for an investigation of the mechanism of action of the antiproliferative drug Adriamycin. Erythrocytes were induced to undergo a change in morphology by elevation of intracellular calcium. It was revealed that the widely used media employed for the study of morphological change were unsuitable; a new incubation medium was developed so that cells were metabolically replete. In this medium echinocytosis took place both in a calcium concentration- and time-dependent manner. Pretreatment of erythrocytes with Adriamycin (10 M for 10 mins) protected the erythrocytes against calcium-induced echinocytosis at calcium concentrations < 150M. SDS-PAGE analysis of the cytoskeletal proteins prepared from erythrocytes revealed the calcium-induced proteolysis of two main cytoskeletal proteins: band 2:1 and band 4:1. Only the rate of the proteolysis of band 2.1 correlated with the onset of echinocytosis. Adriamycin inhibited the breakdown of band 2.1 even when the cells formed echinocytes; this raises doubts concerning the importance of band 2.1 in the maintenance of discocyte morphology. Adriamycin only marginally inhibited the purified calcium-activated thio protease (calpain). Calcium-loading of human erythrocytes increased the phosphorylation of several major cytoskeletal proteins including pp120, band 3, band 4.1 and band 4.9. The pattern of increase resembled that induced by 12-0-tetradecanoyl-phorbol-13-acetate. Pre-treatment with Adriamycin prior to calcium loading caused a general lowering of basal phosphorylation. Adriamycin had no effect on the activity of the calcium-activated phospholipid-dependent protein kinase (protein kinase C). A hypothesis is put forward that the morphological transition of erythrocytes might be dependent upon the activity of a contractile system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of immunological adjuvants has been established since 1924 and ever since many candidates have been extensively researched in vaccine development. The controlled release of vaccine is another area of biotechnology research, which is advancing rapidly with great potential and success. Encapsulation of peptide and protein drugs within biodegradable microspheres has been amongst the most successful of approaches within the past decade. The present studies have focused on combining the advantages of microsphere delivery systems composed of biodegradable polylactide (PLLA) and polylactide-co-glycolide (PLGA) polymers with that of safe and effective adjuvants. The research efforts were directed to the development of single-dose delivery vehicles which, can be manufactured easily, safely, under mild and favourable conditions to the encapsulated antigens. In pursuing this objective non ionic block copolymers (NIBCs) (Pluronics@ LI01 and L121) were incorporated within poly-dl-lactide (PDLA) micorospheres prepared with emulsification-diffusion method. LI0I and L121 served both as adjuvants and stabilising agents within these vaccine delivery vehicles. These formulations encapsulating the model antigens lysozyme, ovalbumin (OVA) and diphtheria toxoid (DT) resulted in high entrapment efficiency (99%), yield (96.7%) and elicited high and sustained immune response (IgG titres up to 9427) after one single administration over nine months. The structural integrity of the antigens was preserved within these formulations. In evaluating new approaches for the use of well-established adjuvants such as alum, these particles were incorporated within PLLA and PLGA microspheres at much lesser quantities (5-10 times lower) than those contained within conventional alum-adsorbed vaccines. These studies focused on the incorporation of the clinically relevant tetanus toxoid (TT) antigen within biodegradable microspheres. The encapsulation of both alum particles and TT antigen within these micropheres resulted in preparations with high encapsulation efficiency (95%) and yield (91.2%). The immune response to these particles was also investigated to evaluate the secretion of serum IgG, IgG1, IgG2a and IgG2b after a single administration of these vaccines. The Splenic cells proliferation was also investigated as an indication for the induction of cell mediated immunity. These particles resulted in high and sustained immune response over a period of 14 months. The stability of TT within particles was also investigated under dry storage over a period of several months. NIBC microspheres were also investigated as potential DNA vaccine delivery systems using hepatitis B plasmid. These particles resulted in micro spheres of 3-5 μm diameter and were shown to preserve the integrity of the encapsulated (27.7% entrapment efficiency) hepatitis B plasmid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Lipids play a vital role at interfaces such as the tear film in the protection of the anterior eye. Their role is to act as lubricants and reduce surface and interfacial tension. Although there is a lack of appropriate methods to solubilize and dilute phospholipids to the tear film. Here, we report that styrene-maleic acid copolymers (PSMA), can form polymer–lipid complexes in the form of monodisperse nanometric particles, which can easily solubilise these phospholipid molecules by avoiding for example, the use of any kind of surfactant. Method: The interactions of PSMA with phospholipids have been studied by its adsorption from aqueous solutions into monolayers of dimyristoyl-phosphorylcholine (DMPC). The Langmuir trough (LT) technique is used to study this pH-dependant complex formation. The formed nanoparticles have been also analysed by 31P NMR, particle size distribution by light scattering (DLS) and morphology by electron microscopy (SEM). Results: The LT has been found to be a useful technique for in vitro simulation of in vivo lipid layer behaviour: The limiting surface pressure of unstable tear films ranges between 20 and 30 mN/m. More stable tear films show an increase in surface pressure, within the range of 35–45 mN/m. The DMPC monolayers have a limiting surface pressure of 38 mN/m (water), and 45 mN/m (pH 4 buffer), and the PSMA-DMPC complexes formed at pH 4 have a value of 42 mN/m, which resembles that of the stable tear film. The average particle size distribution is 53 ± 10 nm with a low polydispersity index (PDI) of 0.24 ± 0.03. Conclusions: New biocompatible and cheap lipid solubilising agents such as PSMA can be used for the study of the tear film composition and properties. These polymer–lipid complexes in the form of nanoparticles can be used to solubilise and release in a controlled way other hydrophobic molecules such as some drugs or proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incidence of preeclampsia is reduced by a third in smokers, but not in snuff users. Soluble Flt-1 (sFlt-1) and soluble endoglin (sEng) are increased prior to the clinical onset of preeclampsia. Animals exposed to high circulating levels of sFlt-1 and sEng elicit severe preeclampsia-like symptoms. Smokers have reduced circulating sFlt-1 and cigarette smoke extract decreases sFlt-1 release from placental villous explants. An anti-inflammatory enzyme, heme oxygenase-1 (HO-1) and its metabolite carbon monoxide (CO), inhibit sFlt-1 and sEng release. Women with preeclampsia exhale less CO than women with normal pregnancies and HO expression decreases as the severity of preeclampsia increases. In contrast, sFlt-1 levels increase with increasing severity. More importantly, chorionic villous sampling from women at eleven weeks gestation shows that HO-1 mRNA expression is decreased in women who go on to develop preeclampsia. Collectively, these facts provide compelling evidence to support the proposition that the pathogenesis of preeclampsia is largely due to loss of HO activity. This results in an increase in inflammation and excessive elevation of the two key anti-angiogenic factors responsible for the clinical signs of preeclampsia. These findings provide strong evidence for a protective role of HO-1 in pregnancy and identify HO as a target for the treatment of preeclampsia. The cardiovascular drugs, statins, stimulate HO-1 expression and inhibit sFlt-1 release in vivo and in vitro, thus, they have the potential to ameliorate early onset preeclampsia. The StAmP trial is underway to address this and if positive, its outcome will lead to the very first therapeutic intervention to prolong affected pregnancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre-eclampsia is a vascular disorder of pregnancy where anti-angiogenic factors, systemic inflammation and oxidative stress predominate, but none can claim to cause pre-eclampsia. This review provides an alternative to the 'two-stage model' of pre-eclampsia in which abnormal spiral arteries modification leads to placental hypoxia, oxidative stress and aberrant maternal systemic inflammation. Very high maternal soluble fms-like tyrosine kinase-1 (sFlt-1 also known as sVEGFR) and very low placenta growth factor (PlGF) are unique to pre-eclampsia; however, abnormal spiral arteries and excessive inflammation are also prevalent in other placental disorders. Metaphorically speaking, pregnancy can be viewed as a car with an accelerator and brakes, where inflammation, oxidative stress and an imbalance in the angiogenic milieu act as the 'accelerator'. The 'braking system' includes the protective pathways of haem oxygenase 1 (also referred as Hmox1 or HO-1) and cystathionine-γ-lyase (also known as CSE or Cth), which generate carbon monoxide (CO) and hydrogen sulphide (H2S) respectively. The failure in these pathways (brakes) results in the pregnancy going out of control and the system crashing. Put simply, pre-eclampsia is an accelerator-brake defect disorder. CO and H2S hold great promise because of their unique ability to suppress the anti-angiogenic factors sFlt-1 and soluble endoglin as well as to promote PlGF and endothelial NOS activity. The key to finding a cure lies in the identification of cheap, safe and effective drugs that induce the braking system to keep the pregnancy vehicle on track past the finishing line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the pharmacological principles and safe use of drugs is just as important in surgical practice as in any other medical specialty. With an ageing population with often multiple comorbidities and medications, as well as an expanding list of new pharmacological treatments, it is important that surgeons understand the implications of therapeutic drugs on their daily practice. The increasing emphasis on high quality and safe patient care demands that doctors are aware of preventable adverse drug reactions (ADRs) and interactions, try to minimize the potential for medication errors, and consider the benefits and harms of medicines in their patients. This chapter examines these aspects from the view of surgical practice and expands on the implications of some of the most common medical conditions and drug classes in the perioperative period. The therapeutic care of surgical patients is obvious in many circumstances – for example, antibacterial prophylaxis, thromboprophylaxis, and postoperative analgesia. However, the careful examination of other drug therapies is often critical not only to the sustained treatment of the associated medical conditions but to the perioperative outcomes of patients undergoing surgery. The benefit–harm balance of many therapies may be fundamentally altered by the stress of an operation in one direction or the other; this is not a decision that should wait until the anaesthetist arrives for a preoperative assessment or one that should be left to junior medical or nursing staff on the ward.