3 resultados para Metabolic Clearance Rate

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The small intestine poses a major barrier to the efficient absorption of orally administered therapeutics. Intestinal epithelial cells are an extremely important site for extrahepatic clearance, primarily due to prominent P-glycoprotein-mediated active efflux and the presence of cytochrome P450s. We describe a physiologically based pharmacokinetic model which incorporates geometric variations, pH alterations and descriptions of the abundance and distribution of cytochrome 3A and P-glycoprotein along the length of the small intestine. Simulations using preclinical in vitro data for model drugs were performed to establish the influence of P-glycoprotein efflux, cytochrome 3A metabolism and passive permeability on drug available for absorption within the enterocytes. The fraction of drug escaping the enterocyte (F(G)) for 10 cytochrome 3A substrates with a range of intrinsic metabolic clearances were simulated. Following incorporation of P-glycoprotein in vitro efflux ratios all predicted F(G) values were within 20% of observed in vivo F(G). The presence of P-glycoprotein increased the level of cytochrome 3A drug metabolism by up to 12-fold in the distal intestine. F(G) was highly sensitive to changes in intrinsic metabolic clearance but less sensitive to changes in intestinal drug permeability. The model will be valuable for quantifying aspects of intestinal drug absorption and distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanism behind the immunostimulatory effect of the cationic liposomal vaccine adjuvant dimethyldioctadecylammonium and trehalose 6,6′- dibehenate (DDA:TDB) has been linked to the ability of these cationic vesicles to promote a depot after administration, with the liposomal adjuvant and the antigen both being retained at the injection site. This can be attributed to their cationic nature, since reduction in vesicle size does not influence their distribution profile yet neutral or anionic liposomes have more rapid clearance rates. Therefore the aim of this study was to investigate the impact of a combination of reduced vesicle size and surface pegylation on the biodistribution and adjuvanticity of the formulations, in a bid to further manipulate the pharmacokinetic profiles of these adjuvants. From the biodistribution studies, it was found that with small unilamellar vesicles (SUVs), 10% PEGylation of the formulation could influence liposome retention at the injection site after 4 days, whilst higher levels (25 mol%) of PEG blocked the formation of a depot and promote clearance to the draining lymph nodes. Interestingly, whilst the use of 10% PEG in the small unilamellar vesicles did not block the formation of a depot at the site of injection, it did result in earlier antibody response rates and switch the type of T cell responses from a Th1 to a Th2 bias suggesting that the presence of PEG in the formulation not only control the biodistribution of the vaccine, but also results in different types of interactions with innate immune cells. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the association between maternal periconceptional diet and adult offspring health is well characterised, our understanding of the impact of paternal nutrition at the time of conception on offspring phenotype remains poorly defined. Therefore, we determined the effect of a paternal preconception low protein diet (LPD on adult offspring cardiovascular and metabolic health in mice. Male C57BL/6 mice were fed either normal protein diet (NPD; 18% casein or LPD (9% casein for 7 wk before mating. At birth, a reduced male-to-female ratio (P = 0.03 and increased male offspring weight (P = 0.009 were observed in litters from LPD compared with NPD stud males with no differences in mean litter size. LPD offspring were heavier than NPD offspring at 2 and 3 wk of age (P <0.02. However, no subsequent differences in body weight were observed. Adult male offspring derived from LPD studs developed relative hypotension (decreased by 9.2 mmHg and elevated heart rate (P <0.05, whereas both male and female offspring displayed vascular dysfunction and impaired glucose tolerance relative to NPD offspring. At cull (24 wk, LPD males had elevated adiposity (P = 0.04, reduced heart-to-body weight ratio (P = 0.04, and elevated circulating TNF-α levels (P = 0.015 compared with NPD males. Transcript expression in offspring heart and liver tissue was reduced for genes involved in calcium signaling (Adcy, Plcb, Prkcb and metabolism (Fto in LPD offspring (P <0.03. These novel data reveal the impact of suboptimal paternal nutrition on adult offspring cardiovascular and metabolic homeostasis, and provide some insight into the underlying regulatory mechanisms.