4 resultados para Host immune effectors

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

T cell activation is the final step in a complex pathway through which pathogen-derived peptide fragments can elicit an immune response. For it to occur, peptides must form stable complexes with Major Histocompatibility Complex (MHC) molecules and be presented on the cell surface. Computational predictors of MHC binding are often used within in silico vaccine design pathways. We have previously shown that, paradoxically, most bacterial proteins known experimentally to elicit an immune response in disease models are depleted in peptides predicted to bind to human MHC alleles. The results presented here, derived using software proven through benchmarking to be the most accurate currently available, show that vaccine antigens contain fewer predicted MHC-binding peptides than control bacterial proteins from almost all subcellular locations with the exception of cell wall and some cytoplasmic proteins. This effect is too large to be explained from the undoubted lack of precision of the software or from the amino acid composition of the antigens. Instead, we propose that pathogens have evolved under the influence of the host immune system so that surface proteins are depleted in potential MHC-binding peptides, and suggest that identification of a protein likely to contain a single immuno-dominant epitope is likely to be a productive strategy for vaccine design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Septic shock can occur as a result of Gram-negative or Gram-positive infection and involves a complex interaction between bacterial factors and the host immune system producing a systemic inflammatory state that may progress to multiple organ failure and death. Gram-positive bacteria are increasingly becoming more prevalent especially Staphylococcus epidermidis in association with indwelling devices. Lipopolysaccaride (LPS) is the key Gram-negative component involved in this process, but it is not clear which components of Gram-positive bacteria are responsible for progression of this often fatal disease. The aim of this thesis was to investigate the effect of bacterial components on the immune systems. Lipid S, a short chain form of lipoteichoic acid (LTA) found to be excreted from bacteria during growth in culture medium was examined along with other Gram-positive cell wall components: LTA, peptidoglycan (PG) and wall teichoic acids (WTA) and LPS from Gram-negative bacteria. Lipid S, LTA, PG and LPS but not WTA all stimulated murine macrophages and cell lines to produce significant amounts of NO, TNF-a, IL-6 and IL-1 and would induce fever and tissue damage seen in inflammatory diseases. Lipid S proved to be the most potent out of the Gram-positive samples tested. IgG antibodies in patients serum were found to bind to and cross react with lipid S and LTA. Anti-inflammatory antibiotics, platelet activating factor (PAF), PAF receptor antagonists and monoclonal antibodies (mAbs) directed to LTA, CD14 and toll-like receptors were utilised to modulate cytokine and NO production. In cell culture the anti-LTA and the anti-CD14 mAbs failed to markedly attenuate the production of NO, TNF-a, IL-6 or IL-1, the anti-TLR4 antibody did greatly inhibit the ability of LPS to stimulate cytokine production but not lipid S. The tetracyclines proved to be the most effective compounds, many were active at low concentrations and showed efficacy to inhibit both lipid S and LPS stimulated macrophages to produce NO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many factors can be, and have been, attributed to the appearance of complications in lens wear, but the greatest is associated with deposition. Reduced acuity, irritation and inflammatory responses are often referred to as adverse reactions arising as a result of deposition. In this study, particular attention was paid to the potential role of adsorbed proteins in activating, mediating and/or stimulating a host immune response, i.e., the hypothesis that the adsorption of certain proteins from the tears and ocular surfaces may actively affect successful lens wear. In particular, the purpose of this study was to investigate the presence of a group of proteins previously undiscovered in the ocular environment. The intention was to target a family of proteins/glycoproteins that have become prominent recently in a variety of inflammatory responses and disorders at many other mucosal associated sites around the body, e.g. in nasal rhinitis and in joint inflammation. The protein cascade in question is the kinin family of inflammatory mediators. The aim was to investigate their presence in the ocular environment, specifically in relation to contact lens wear, and consequently assess the implications of their discovery. High molecular weight kininogen (HMWK), with its central role in kinin responses, was investigated initially as the marker of kinin activity, with subsequent members examined thereafter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid clearance of dying cells is a vital feature of apoptosis throughout development, tissue homeostasis and resolution of inflammation. The phagocytic removal of apoptotic cells is mediated by both professional and amateur phagocytes, armed with a series of pattern recognition receptors that participate in host defence and apoptotic cell clearance. CD14 is one such molecule. It is involved in apoptotic cell clearance (known to be immunosuppressive and anti-inflammatory) and binding of the pathogen-associated molecular pattern, lipopolysaccharides (a pro-inflammatory event). Thus CD14 is involved in the assembly of two distinct ligand-dependent macrophage responses. This project sought to characterise the involvement of the innate immune system, particularly CD14, in the removal of apoptotic cells. The role of non-myeloid CD14 was also considered and the data suggests that the expression of CD14 by phagocytes may define their professional status as phagocytes. To assess if differential CD14 ligation causes the ligand-dependent divergence in macrophage responses, a series of CD14 point mutants were used to map the binding of apoptotic cells and lipopolysaccharides. Monoclonal antibodies, 61D3 and MEM18, known to interfere with ligand-binding and responses, were also mapped. Data suggests that residue 11 of CD14, is key for the binding of 61D3 (but not MEM18), LPS and apoptotic cells, indicating lipopolysaccharides and apoptotic cells bind to similar residues. Furthermore using an NF-kB reporter, results show lipopolysaccharides but not apoptotic cells stimulate NF-kB. Taken together these data suggests ligand-dependent CD14 responses occur via a mechanism that occurs downstream of CD14 ligation but upstream of NF-?B activation. Alternatively apoptotic cell ligation of CD14 may not result in any signalling event, possibly by exclusion of TLR-4, suggesting that engulfment receptors, (e.g. TIM-4, BAI1 and Stablin-2) are required to mediate the uptake of apoptotic cells and the associated anti-inflammatory response.