57 resultados para Drug Delivery Systems

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid dispersions can be used to improve dissolution of poorly soluble drugs and PVP is a common polymeric carrier in such systems. The mechanisms controlling release of drug from solid dispersions are not fully understood and proposed theories are dependent on an understanding of the dissolution behaviour of both components of the dispersion. This study uses microviscometry to measure small changes in the viscosity of the dissolution medium as the polymer dissolves from ibuprofen-PVP solid dispersions. The microviscometer determines the dynamic and kinematic viscosity of liquids based on the rolling/falling ball principle. Using a standard USP dissolution apparatus, the dissolution of the polymer from the solid dispersion was easily measured alongside drug release. Drug release was found to closely follow polymer dissolution at the molecular weights and ratios used. The combination of sensitivity and ease of use make microviscometry a valuable technique for the elucidation of mechanisms governing drug release from polymeric delivery systems. © 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyanhydrides are useful biodegradable vehicles for controlled drug delivery. In aqueous media the breaking of the anhydride bonds resulting in gradually polymer fragments collapse and release drugs in a controlled manner. In this study, two new biodegradable polyanhydrides copolymers were synthesised using a melt-polycondensation method. The first is poly (bis (p-carboxyphenoxy)-2-butene-co-sebacic acid) (CP2B: SA), which has double bonds along the polymer backbone. The second is crosslinked poly (glutamic acid-sebacic acid-co-sebacic acid) (GluSA: SA), where the conjugated unit of glutamic acid with sebacic acid (glutamic acid-SA) acted as a crosslinking fragment in producing the crosslinking polymer. The two polymers were applied to preparation of microspheres with bovine serum albumin (BSA) as a model protein, using both double emulsion solvent evaporation and spray drying methods. The characterisation of the microspheres, morphology, particle size, and drug loading, was studied. The in vitro hydrolytic degradation of polymers and blank microspheres was monitored using IR, GPC, and DSC. In vitro drug release behaviour was also studied. Though the studies showed cleavages of anhydride bonds occurred rapidly (<5 days), bulks of the polymer microspheres could be observed after a few weeks to a month; and only around 10-35% of the protein was detectable in a four-week period in vitro. We found the pH of the medium exerts a large impact on the release of the protein from the microspheres. The higher the pH, the faster the release. Therefore the release of the protein from the polyanhydride microspheres was pH-sensitive due mainly to the dissolution of monomers from the microspheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topical and transdermal formulations are promising platforms for the delivery of drugs. A unit dose topical or transdermal drug delivery system that optimises the solubility of drugs within the vehicle provides a novel dosage form for efficacious delivery that also offers a simple manufacture technique is desirable. This study used Witepsol® H15 wax as a abase for the delivery system. One aspect of this project involved determination of the solubility of ibuprofen, flurbiprofen and naproxen in the was using microscopy, Higuchi release kinetics, HyperDSC and mathematical modelling techniques. Correlations between the results obtained via these techniques were noted with additional merits such as provision of valuable information on drug release kinetics and possible interactions between the drug and excipients. A second aspect of this project involved the incorporation of additional excipients: Tween 20 (T), Carbopol®971 (C) and menthol (M) to the wax formulation. On in vitro permeation through porcine skin, the preferred formulations were: ibuprofen (5% w/w) within Witepsol®H15 + 1% w/w T; flurbiprofen (10% w/w) within Witepsol®H15 + 1% w/w T; naproxen (5% w/w) within Witepsol®H15 + 1% w/w T + 1% C and sodium diclofenac (10% w/w) within Witepsol®H15 + 1% w/w T + 1% w/w T + 1% w/w C + 5% w/w M. Unit dose transdermal tablets containing ibuprofen and diclofenac were produced with improved flux compared to marketed products; Voltarol Emugel® demonstrated flux of 1.68x10-3 cm/h compared to 123 x 10-3 cm/h for the optimised product as detailed above; Ibugel Forte® demonstrated a permeation coefficient value of 7.65 x 10-3 cm/h compared to 8.69 x 10-3 cm/h for the optimised product as described above.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alginate is widely used as a viscosity enhancer in many different pharmaceutical formulations. The aim of this thesis is to quantitatively describe the functions of this polyelectrolyte in pharmaceutical systems. To do this the techniques used were Viscometry, Light Scattering, Continuous and Oscillatory Shear Rheometry, Numerical Analysis and Diffusion. Molecular characterization of the Alginate was carried out using Viscometry and Light Scattering to determine the molecular weight, the radius of gyration, the second virial coefficient and the Kuhn statistical segment length. The results showed good agreement with similar parameters obtained in previous studies. By blending Alginate with other polyelectrolytes, Xanthan Gum and 'Carbopol', in various proportions and with various methods of low and high shear preparation, a very wide range of dynamic rheological properties was found. Using oscillatory testing, the parameters often varied over several decades of magnitude. It was shown that the determination of the viscous and elastic components is particularly useful in describing the rheological 'profiles' of suspending agent blends and provides a step towards the non-empirical formulation of pharmaceutical disperse systems. Using numerical analysis of equations describing planar diffusion, it was shown that the analysis of drug release profiles alone does not provide unambiguous information about the mechanism of rate control. These principles were applied to the diffusion of Ibuprofen in Calcium Alginate gels. For diffusion in such non-Newtonian systems, emphasis was placed on the use of the elastic as well as the viscous component of viscoelasticity. It was found that the diffusion coefficients were relatively unaffected by increases in polymer concentration up to 5 per cent, yet the elasticities measured by oscillatory shear rheometry were increased. This was interpreted in the light of several theories of diffusion in gels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study identifies and investigates the potential use of in-eye trigger mechanisms to supplement the widely available information on release of ophthalmic drugs from contact lenses under passive release conditions. Ophthalmic dyes and surrogates have been successfully employed to investigate how these factors can be drawn together to make a successful system. The storage of a drug-containing lens in a pH lower than that of the ocular environment can be used to establish an equilibrium that favours retention of the drug in the lens prior to ocular insertion. Although release under passive conditions does not result in complete dye elution, the use of mechanical agitation techniques which mimic the eyelid blink action in conjunction with ocular tear chemistry promotes further release. In this way differentiation between passive and triggered in vitro release characteristics can be established. Investigation of the role of individual tear proteins revealed significant differences in their ability to alter the equilibrium between matrix-held and eluate-held dye or drug. These individual experiments were then investigated in vivo using ophthalmic dyes. Complete elution was found to be achievable in-eye; this demonstrated the importance of that fraction of the drug retained under passive conditions and the triggering effect of in-eye conditions on the release process. Understanding both the structure-property relationship between drug and material and in-eye trigger mechanisms, using ophthalmic dyes as a surrogate, provides the basis of knowledge necessary to design ocular drug delivery vehicles for in-eye release in a controllable manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultimate aim of this project was to design new biomaterials which will improve the efficiency of ocular drug delivery systems. Initially, it was necessary to review the information available on the nature of the tear fluid and its relationship with the eye. An extensive survey of the relevant literature was made. There is a common belief in the literature that the ocular glycoprotein, mucin, plays an important role in tear film stability, and furthermore, that it exists as an adherent layer covering the corneal surface. If this belief is true, the muco-corneal interaction provides the ideal basis for the development of sustained release drug delivery. Preliminary investigations were made to assess the ability of mucin to adhere to polymer surfaces. The intention was to develop a synthetic model which would mimic the supposed corneal/mucin interaction. Analytical procedures included the use of microscopy (phase contrast and fluorescence), fluorophotometry, and mucin-staining dyes. Additionally, the physical properties of tears and tear models were assessed under conditions mimicking those of the preocular environment, using rheological and tensiometric techniques. The wetting abilities of these tear models and opthalmic formulations were also investigated. Tissue culture techniques were employed to enable the surface properties of the corneal surface to be studied by means of cultured corneal cells. The results of these investigations enabled the calculation of interfacial and surface characteristics of tears, tear models, and the corneal surface. Over all, this work cast doubt on the accepted relationship of mucin with the cornea. A corneal surface model was designed, on the basis of the information obtained during this project, which would possess similar surface chemical properties (i.e. would be biomimetic) to the more complex original. This model, together with the information gained on the properties of tears and solutions intended for ocular instillation, could be valuable in the design of drug formulations with enhanced ocular retention times. Furthermore, the model itself may form the basis for the design of an effective drug-carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localised, targeted drug delivery to the oesophagus offers the potential for more effective delivery and reduced drug dosages, coupled with increased patient compliance. This thesis considers bioadhesive liquids, orally retained tablets and films as well as chewable dosage forms as drug delivery systems to target the oesophagus. Miconazole nitrate was used as a model antifungal agent. Chitosan and xanthan gum hydrogels were evaluated as viscous polymer viables with the in vitro retention, drug release and minimum inhibitory concentration values of the formulations measured. Xanthan showed prolonged retention on the oesophageal surface in vitro yet chitosan reduced the MIC value; both polymers offer potential for local targeting to the oesophagus. Cellulose derivatives were investigated within orally retained dosage forms. Both drug and polymer dissolution rates were measured to investigate the drug release mechanism and to develop a formulation with concomitant drug and polymer release to target the oesophagus with solubilised drug within a viscous media. Several in vitro dissolution methods were evaluated to measure drug release from chewable dosage forms with both drug and polymer dissolution quantified to investigate the effects of dissolution apparatus on drug release. The results from this thesis show that a range of drug delivery strategies that can be used to target drug to the oesophagus. The composition of these formulations as well as the methodology used within the development are crucial to best understand the formulation and predict its performance in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocular barriers and the poor water solubility of drug candidates present a number of problems for the development of ocular drug delivery systems. Recently, the emergence of lipid-based nanocarriers has provided a viable means of enhancing the bioavailability of ophthalmic formulations. A number of these formulations have been found to be clinically active and several others are currently undergoing clinical trials. In this review, the advantages of lipid-based nanocarriers as non-invasive topical ocular drug delivery systems are presented. Many systems, including emulsions, liposomes, cubosomes, niosomes and other lipid-based nanocarriers, are reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Liposomes remain at the forefront of drug and vaccine design owing to their well-documented abilities to act as delivery vehicles. Nevertheless, the concept of liposomes as delivery vehicles is not a new one, with most works focusing on their use for the delivery of genes and drugs. However, in the last 10 years a significant amount of research has focused on using liposomes as vaccine adjuvants, not only as an antigen delivery vehicle but also as a tool to increase the immunogenicity of peptide and protein antigens. AREAS COVERED: This paper reviews liposomal adjuvants now in vaccine development, with particular emphasis on their adjuvant mechanism and how specific physicochemical characteristics of liposomes affect the immune response. The inclusion of immunomodulators is also discussed, with prominence given to Toll-like receptor ligands. EXPERT OPINION: The use of liposomes as vaccine delivery systems is evolving rapidly owing to the combined increase in technological advances and understanding of the immune system. Liposomes that contain and deliver immunostimulators and antigens are now being developed to target diseases that require stimulation of both humoral and cell-mediated immune responses. The CAF liposomal system, described in detail in this review, is one liposomal model that shows such flexibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori is one of the most common pathogenic bacterial infections, colonising an estimated half of all humans. It is associated with the development of serious gastroduodenal disease - including peptic ulcers, gastric lymphoma and acute chronic gastritis. Current recommended regimes are not wholly effective and patient compliance, side-effects and bacterial resistance can be problematic. Drug delivery to the site of residence in the gastric mucosa may improve efficacy of the current and emerging treatments. Gastric retentive delivery systems potentially allow increased penetration of the mucus layer and therefore increased drug concentration at the site of action. Proposed gastric retentive systems for the enhancement of local drug delivery include floating systems, expandable or swellable systems and bioadhesive systems. Generally, problems with these formulations are lack of specificity, limited to mucus turnover or failure to persist in the stomach. Gastric mucoadhesive systems are hailed as a promising technology to address this issue, penetrating the mucus layer and prolonging activity at the mucus-epithelial interface. This review appraises gastroretentive delivery strategies specifically with regard to their application as a delivery system to target Helicobacter. As drug-resistant strains emerge, the development of a vaccine to eradicate and prevent reinfection is an attractive proposition. Proposed prophylactic and therapeutic vaccines have been delivered using a number of mucosal routes using viral and non-viral vectors. The delivery form, inclusion of adjuvants, and delivery regime will influence the immune response generated. © 2005 Bentham Science Publishers Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Powders for inhalation are traditionally prepared using a destructive micronization process such as jet milling to reduce the particle size of the drug to 2-5 μm. The resultant particles are typically highly cohesive and display poor aerosolization properties, necessitating the addition of a coarse carrier particle to the micronized drug to improve powder flowability. Spray-drying technology offers an alternative, constructive particle production technique to the traditional destructive approach, which may be particularly useful when processing biotechnology products that could be adversely affected by high-energy micronization processes. Advantages of spray drying include the ability to incorporate a wide range of excipients into the spray-drying feedstock, which could modify the aerosolization and stability characterizations of the resultant powders, as well as modify the drug release and absorption profiles following inhalation. This review discusses some of the reasons why pulmonary drug delivery is becoming an increasingly popular route of administration and describes the various investigations that have been undertaken in the preparation of spray-dried powders for pulmonary drug delivery. © 2007 by Begell House, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is currently, no ideal system for studying nasal drug delivery in vitro. The existing techniques such as the Ussing chamber and cell culture all have major disadvantages. Most importantly, none of the existing techniques accurately represent the interior of the nasal cavity, with its airflow and humidity; neither do they allow the investigation of solid dosage forms.The work in this thesis represents the development of an in vitro model system in which the interior characteristics of the nasal cavity are closely represented, and solid or minimal volume dosage forms can be investigated. The complete nasal chamber consists of two sections: a lower tissue, viability chamber and an upper nasal chamber. The lower tissue viability chamber has been shown, using existing tissue viability monitoring techniques, to maintain the viability of a number of epithelial tissues, including porcine and rabbit nasal tissue, and rat ileal and Payers' patch tissue. The complete chamber including the upper nasal chamber has been shown to provide tissue viability for porcine and rabbit nasal tissue above that available using the existing Ussing chamber techniques. Adaptation of the complete system, and the development of the necessary experimental protocols that allow aerosol particle-sizing, together with videography, has shown that the new factors investigated, humidity and airflow, have a measurable effect on the delivered dose from a typical nasal pump. Similarly, adaptation of the chamber to fit under a confocal microscope, and the development of the necessary protocols has shown the effect of surface and size on the penetration of microparticulate materials into nasal epithelial tissues. The system developed in this thesis has been shown to be flexible, in allowing the development of the confocal and particle-sizing systems. For future nasal drug delivery studies, the ability to measure such factors as the size of the delivered system in the nasal cavity, the depth of penetration of the formulation into the tissue are essential. Additionally, to have access to other data such as that obtained from drug transport in the same system, and to have the tissue available for histological examination represents a significant advance in the usefulness of such an in vitro technique for nasal delivery.