3 resultados para DPPH

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to use extremely low concentrations of free radical generating compounds as a 'catalyst' to trigger endogenous free radical chain reactions in the host and to selectively eliminate neoplastic cells in the host. To test the hypothesis, a number of free radical generating compounds were screened on several malignant cell lines in vitro to select model compounds that were used against tumour models in vivo. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and its derivatives were selected at the model compounds for in vivo experiments in view of their high cytotoxic potency against several malignant cell lines in vitro. The water soluble derivative, 2,2-diphenyl-1-(2', 4'-dinitro-6'-sulphophenyl) hydrazyl (DDSH) given by subcutaneous injections demonstrated significant antitumour activities against the MAC 16 murine colon adenocarcinoma implanted subcutaneously in male NMRI mice at nanomolar concentration range. 40-60% of long term survival of over 60 days was achieved (compared with control survival of 20 days) with total tumour elimination. This compound was also active against both P388 leukaemia in male BDF1 mice and TLX5 lymphoid tumour in male CBA/CA mice at a similar concentration range. However, some of these animals died suddenly after treatment with no evidence of disease present at post mortem. The cause of death was unknown but thought to be related to the treatment. There was significant increase in serum level of malondialdehyde (MDA) following treatment, but did not correlate to the antitumour activities of these compounds. Induction of supcroxide dismutase (SOD), and glutathione peroxidase (GPx) occurred around day 8 after the administration of DDSH. Histological sections of MAC16 tumours showed areas of extensive massive haemorrhagic necrosis and vascular collapse associated with perivascular cell death following the administration of nanomolar concentration of DDSH which was probably compatible with the effects of free radicals. It was concluded that the antitumour activities of these compounds may be related to free radical and cytokine production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Thailand, the leaves of Aquilaria crassna have been used traditionally for the treatments of various disorders, but without any scientific analysis. In this study, the antipyretic, analgesic, anti-inflammatory and anti-oxidative properties of A. crassna leaves extract were investigated at a wide dose range in rodents. Experimental animals were treated orally with an aqueous extract of Aquilaria crassna leaves (ACE). They were tested for antipyretic (Baker′s yeast-induced fever in rats), analgesic (hot plate test in mice) and anti-inflammatory (carrageenan-induced paw edema in rats) activities. An anti-oxidative effect of ACE was evaluated by using the DPPH anti-oxidant assay. The results showed that, after 5 hours of yeast injection, 400 and 800 mg/kg ACE significantly reduced the rectal temperature of rats. Mice were found significantly less sensitive to heat at an oral dose of 800 mg/kg ACE, after 60 and 90 min. No anti-inflammatory activity of ACE at an 800 mg/kg dose could be observed in the rat paw assay. An anti-oxidative activity of ACE was observed with an IC 50 value of 47.18 g/ ml. No behavioral or movement change could be observed in mice after oral administration of ACE (800 or 8,000 mg/kg) for seven consecutive days. Interestingly, from the second day of treatment, animals had a significant lower body weight at the 8,000 mg/kg dose of ACE compared to the control. No toxicity was identified and the results of this study state clearly that Aquilaria crassna leaves extracts possess antipyretic, analgesic and anti-oxidative properties without anti-inflammatory activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several ester derivatives of rosmarinic acid (rosmarinates) were synthesised, characterised (1D and 2D NMR, UV and FTIR spectroscopy) and tested for their potential use as antioxidants derived from a renewable natural resource. The intrinsic free radical scavenging activity of the rosmarinates was assessed, initially using a modified DPPH (2, 2-diphenyl-1-picrylhydrazyl radical) method, and found to be higher than that of commercial synthetic hindered phenol antioxidants Irganox 1076 and Irganox 1010. The thermal stabilising performance of the rosmarinates in polyethylene (PE) and polypropylene (PP) was subsequently examined and compared to that of samples prepared similarly but in the presence of Irganox 1076 (in PE) and Irganox 1010 (in PP) which are typically used for polyolefin stabilisation in industrial practice. The melt stability and the long-term thermo-oxidative stability (LTTS) of processed polymers containing the antioxidants were assessed by measuring the melt flow index (MFI), melt viscosity, oxidation induction time (OIT) and long-term (accelerated) thermal ageing performance. The results show that both the melt and the thermo-oxidative stabilisation afforded by the rosmarinates, and in particular the stearyl derivative, in both PE and PP, are superior to those of Irganox 1076 and Irganox 1010, hence their potential as effective sustainable bio-based antioxidants for polymers. The rosmarinic acid used for the synthesis of the rosmarinates esters in this study was obtained from commercial rosemary extracts (AquaROX80). Furthermore, a large number of different strains of UK-grown rosemary plants (Rosmarinum officinalis) were also extracted and analysed in order to examine their antioxidant content. It was found that the carnosic and the rosmarinic acids, and to a much lesser extent the carnosol, constituted the main antioxidant components of the UK-plants, with the two acids being present at a ratio of 3:1, respectively.