12 resultados para Bayesian statistical decision theory

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO INCOMPLETE PAPERWORK, ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of evaluating different learning rules and other statistical estimators is analysed. A new general theory of statistical inference is developed by combining Bayesian decision theory with information geometry. It is coherent and invariant. For each sample a unique ideal estimate exists and is given by an average over the posterior. An optimal estimate within a model is given by a projection of the ideal estimate. The ideal estimate is a sufficient statistic of the posterior, so practical learning rules are functions of the ideal estimator. If the sole purpose of learning is to extract information from the data, the learning rule must also approximate the ideal estimator. This framework is applicable to both Bayesian and non-Bayesian methods, with arbitrary statistical models, and to supervised, unsupervised and reinforcement learning schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural networks are statistical models and learning rules are estimators. In this paper a theory for measuring generalisation is developed by combining Bayesian decision theory with information geometry. The performance of an estimator is measured by the information divergence between the true distribution and the estimate, averaged over the Bayesian posterior. This unifies the majority of error measures currently in use. The optimal estimators also reveal some intricate interrelationships among information geometry, Banach spaces and sufficient statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bayesian decision theory is increasingly applied to support decision-making processes under environmental variability and uncertainty. Researchers from application areas like psychology and biomedicine have applied these techniques successfully. However, in the area of software engineering and speci?cally in the area of self-adaptive systems (SASs), little progress has been made in the application of Bayesian decision theory. We believe that techniques based on Bayesian Networks (BNs) are useful for systems that dynamically adapt themselves at runtime to a changing environment, which is usually uncertain. In this paper, we discuss the case for the use of BNs, speci?cally Dynamic Decision Networks (DDNs), to support the decision-making of self-adaptive systems. We present how such a probabilistic model can be used to support the decision making in SASs and justify its applicability. We have applied our DDN-based approach to the case of an adaptive remote data mirroring system. We discuss results, implications and potential bene?ts of the DDN to enhance the development and operation of self-adaptive systems, by providing mechanisms to cope with uncertainty and automatically make the best decision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online learning is discussed from the viewpoint of Bayesian statistical inference. By replacing the true posterior distribution with a simpler parametric distribution, one can define an online algorithm by a repetition of two steps: An update of the approximate posterior, when a new example arrives, and an optimal projection into the parametric family. Choosing this family to be Gaussian, we show that the algorithm achieves asymptotic efficiency. An application to learning in single layer neural networks is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Task classification is introduced as a method for the evaluation of monitoring behaviour in different task situations. On the basis of an analysis of different monitoring tasks, a task classification system comprising four task 'dimensions' is proposed. The perceptual speed and flexibility of closure categories, which are identified with signal discrimination type, comprise the principal dimension in this taxonomy, the others being sense modality, the time course of events, and source complexity. It is also proposed that decision theory provides the most complete method for the analysis of performance in monitoring tasks. Several different aspects of decision theory in relation to monitoring behaviour are described. A method is also outlined whereby both accuracy and latency measures of performance may be analysed within the same decision theory framework. Eight experiments and an organizational study are reported. The results show that a distinction can be made between the perceptual efficiency (sensitivity) of a monitor and his criterial level of response, and that in most monitoring situations, there is no decrement in efficiency over the work period, but an increase in the strictness of the response criterion. The range of tasks exhibiting either or both of these performance trends can be specified within the task classification system. In particular, it is shown that a sensitivity decrement is only obtained for 'speed' tasks with a high stimulation rate. A distinctive feature of 'speed' tasks is that target detection requires the discrimination of a change in a stimulus relative to preceding stimuli, whereas in 'closure' tasks, the information required for the discrimination of targets is presented at the same point In time. In the final study, the specification of tasks yielding sensitivity decrements is shown to be consistent with a task classification analysis of the monitoring literature. It is also demonstrated that the signal type dimension has a major influence on the consistency of individual differences in performance in different tasks. The results provide an empirical validation for the 'speed' and 'closure' categories, and suggest that individual differences are not completely task specific but are dependent on the demands common to different tasks. Task classification is therefore shovn to enable improved generalizations to be made of the factors affecting 1) performance trends over time, and 2) the consistencv of performance in different tasks. A decision theory analysis of response latencies is shown to support the view that criterion shifts are obtained in some tasks, while sensitivity shifts are obtained in others. The results of a psychophysiological study also suggest that evoked potential latency measures may provide temporal correlates of criterion shifts in monitoring tasks. Among other results, the finding that the latencies of negative responses do not increase over time is taken to invalidate arousal-based theories of performance trends over a work period. An interpretation in terms of expectancy, however, provides a more reliable explanation of criterion shifts. Although the mechanisms underlying the sensitivity decrement are not completely clear, the results rule out 'unitary' theories such as observing response and coupling theory. It is suggested that an interpretation in terms of the memory data limitations on information processing provides the most parsimonious explanation of all the results in the literature relating to sensitivity decrement. Task classification therefore enables the refinement and selection of theories of monitoring behaviour in terms of their reliability in generalizing predictions to a wide range of tasks. It is thus concluded that task classification and decision theory provide a reliable basis for the assessment and analysis of monitoring behaviour in different task situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow control in Computer Communication systems is generally a multi-layered structure, consisting of several mechanisms operating independently at different levels. Evaluation of the performance of networks in which different flow control mechanisms act simultaneously is an important area of research, and is examined in depth in this thesis. This thesis presents the modelling of a finite resource computer communication network equipped with three levels of flow control, based on closed queueing network theory. The flow control mechanisms considered are: end-to-end control of virtual circuits, network access control of external messages at the entry nodes and the hop level control between nodes. The model is solved by a heuristic technique, based on an equivalent reduced network and the heuristic extensions to the mean value analysis algorithm. The method has significant computational advantages, and overcomes the limitations of the exact methods. It can be used to solve large network models with finite buffers and many virtual circuits. The model and its heuristic solution are validated by simulation. The interaction between the three levels of flow control are investigated. A queueing model is developed for the admission delay on virtual circuits with end-to-end control, in which messages arrive from independent Poisson sources. The selection of optimum window limit is considered. Several advanced network access schemes are postulated to improve the network performance as well as that of selected traffic streams, and numerical results are presented. A model for the dynamic control of input traffic is developed. Based on Markov decision theory, an optimal control policy is formulated. Numerical results are given and throughput-delay performance is shown to be better with dynamic control than with static control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information systems have developed to the stage that there is plenty of data available in most organisations but there are still major problems in turning that data into information for management decision making. This thesis argues that the link between decision support information and transaction processing data should be through a common object model which reflects the real world of the organisation and encompasses the artefacts of the information system. The CORD (Collections, Objects, Roles and Domains) model is developed which is richer in appropriate modelling abstractions than current Object Models. A flexible Object Prototyping tool based on a Semantic Data Storage Manager has been developed which enables a variety of models to be stored and experimented with. A statistical summary table model COST (Collections of Objects Statistical Table) has been developed within CORD and is shown to be adequate to meet the modelling needs of Decision Support and Executive Information Systems. The COST model is supported by a statistical table creator and editor COSTed which is also built on top of the Object Prototyper and uses the CORD model to manage its metadata.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory. © 2007 The American Physical Society.