18 resultados para 030603 Colloid and Surface Chemistry
em Aston University Research Archive
Resumo:
An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 − sites to OH− and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C–H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.
Resumo:
The primary objective of this research has been to investigate the interfacial phenomenon of protein adsorption in relation to the bulk and surface structure-property effect s of hydrogel polymers. In order to achieve this it was first necessary to characterise the bulk and surface properties of the hydrogels, with regard to the structural chemistry of their component monomers. The bulk properties of the hydrogels were established using equilibrium water content measurements, together with water-binding studies by differential scanning calorimetry (D.S.C.). Hamilton and captive air bubble-contact angle techniques were employed to characterise the hydrogel-water interface and from which by a mathematical derivation, the interfacial free energy (ðsw) and the surface free energy components (ð psv, ðdsv, ðsv) were obtained. From the adsorption studies using the radio labelled iodinated (125I) proteins of human serum albumin (H.S.A.) and human fibrinogen (H.Fb.), it was Found that multi-layered adsorption was occurring and that the rate and type of this adsorption was dependent on the physico-chemical behaviour of the adsorbing protein (and its bulk concentration in solution), together with the surface energetics of the adsorbent polymer. A potential method for the invitro evaluation of a material's 'biocompatibility' was also investigated, based on an empirically observed relationship between the adsorption of albumin and fibrinogen and the 'biocompatibility' of polymeric materials. Furthermore, some consideration was also given to the biocompatibility problem of proteinaceous deposit formation on hydrophilic soft' contact lenses and in addition a number of potential continual wear contact lens formulations now undergoing clinical trials,were characterised by the above techniques.
Resumo:
Many Prussian Blue Analogues are known to show a thermally induced phase transition close to room temperature and a reversible, photo-induced phase transition at low temperatures. This work reports on magnetic measurements, X-ray photoemission and Raman spectroscopy on a particular class of these molecular heterobimetallic systems, specifically on Rb0.81Mn[Fe(CN)6]0.95_1.24H2O, Rb0.97Mn[Fe(CN)6]0.98_1.03H2O and Rb0.70Cu0.22Mn0.78[Fe(CN)6]0.86_2.05H2O, to investigate these transition phenomena both in the bulk of the material and at the sample surface. Results indicate a high degree of charge transfer in the bulk, while a substantially reduced conversion is found at the sample surface, even in case of a near perfect (Rb:Mn:Fe=1:1:1) stoichiometry. Thus, the intrinsic incompleteness of the charge transfer transition in these materials is found to be primarily due to surface reconstruction. Substitution of a large fraction of charge transfer active Mn ions by charge transfer inactive Cu ions leads to a proportional conversion reduction with respect to the maximum conversion that is still stoichiometrically possible and shows the charge transfer capability of metal centers to be quite robust upon inclusion of a neighboring impurity. Additionally, a 532 nm photo-induced metastable state, reminiscent of the high temperature Fe(III)Mn(II) ground state, is found at temperatures 50-100 K. The efficiency of photo-excitation to the metastable state is found to be maximized around 90 K. The photo-induced state is observed to relax to the low temperature Fe(II)Mn(III) ground state at a temperature of approximately 123 K.
Resumo:
The wettability of the (001), (100), and (011) crystallographic facets of macroscopic aspirin crystals has been experimentally investigated using a sessile drop contact angle (θ) method. θ for a nonpolar liquid was very similar for all three facets, though significant θ differences were observed for three polar probe liquids. The observed hydrophobicity of the (001) and (100) facets is ascribed to a reduced hydrogen bonding potential at these surfaces, whilst the observed hydrophilicity of facet (011) may be attributed to presence of surface carboxylic functionalities as confirmed by X-ray photoelectron spectroscopy (XPS). The dispersive component of the surface free energy (γ) was similar for all three facets (35 ± 2 mJ/m). The total surface energy, γs varied between 46 and 60 mJ/m due to significant variations in the polar/acid-base components of γ for all facets. Surface polarity as determined by γ measurements and XPS data were in good agreement, linking the variations in wettability to the concentration of oxygen containing surface functional groups. In conclusion, the wettability and the surface energy of a crystalline organic solid, such as aspirin, was found to be anisotropic and facet dependant, and in this case, related to the presence of surface carboxylic functionalities. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Resumo:
The adsorption and reaction of ethanol over Pt{1 1 1} has been investigated by Fast XPS and TPD. Ethanol adsorbs molecularly at 100 K, with a saturation coverage of 0.44 ML giving rise to C 1s components with binding energies of 283.7 eV (CH3–) and 284.8 eV (–H2COH). Ethanol multilayers desorb above 150 K, while ∼60% of the monolayer desorbs intact above 200 K in competition with decomposition pathways. Reaction initially proceeds via progressive dehydrogenation to form a metastable acetyl intermediate with components at 283.5 eV (CH3–) and 285.2 eV (-C=O), which in turn undergoes decarbonylation above 250 K to chemisorbed CO and methyl groups. A significant fraction of the latter are hydrogenated above 270 K, desorbing as CH4, with the remainder further decomposing to liberate H2 and surface CHx moeities.
Resumo:
Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.
Resumo:
Objective: To introduce a new technique for co-registration of Magnetoencephalography (MEG) with magnetic resonance imaging (MRI). We compare the accuracy of a new bite-bar with fixed fiducials to a previous technique whereby fiducial coils were attached proximal to landmarks on the skull. Methods: A bite-bar with fixed fiducial coils is used to determine the position of the head in the MEG co-ordinate system. Co-registration is performed by a surface-matching technique. The advantage of fixing the coils is that the co-ordinate system is not based upon arbitrary and operator dependent fiducial points that are attached to landmarks (e.g. nasion and the preauricular points), but rather on those that are permanently fixed in relation to the skull. Results: As a consequence of minimizing coil movement during digitization, errors in localization of the coils are significantly reduced, as shown by a randomization test. Displacement of the bite-bar caused by removal and repositioning between MEG recordings is minimal (∼0.5 mm), and dipole localization accuracy of a somatosensory mapping paradigm shows a repeatability of ∼5 mm. The overall accuracy of the new procedure is greatly improved compared to the previous technique. Conclusions: The test-retest reliability and accuracy of target localization with the new design is superior to techniques that incorporate anatomical-based fiducial points or coils placed on the circumference of the head. © 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
In stereo vision, regions with ambiguous or unspecified disparity can acquire perceived depth from unambiguous regions. This has been called stereo capture, depth interpolation or surface completion. We studied some striking induced depth effects suggesting that depth interpolation and surface completion are distinct stages of visual processing. An inducing texture (2-D Gaussian noise) had sinusoidal modulation of disparity, creating a smooth horizontal corrugation. The central region of this surface was replaced by various test patterns whose perceived corrugation was measured. When the test image was horizontal 1-D noise, shown to one eye or to both eyes without disparity, it appeared corrugated in much the same way as the disparity-modulated (DM) flanking regions. But when the test image was 2-D noise, or vertical 1-D noise, little or no depth was induced. This suggests that horizontal orientation was a key factor. For a horizontal sine-wave luminance grating, strong depth was induced, but for a square-wave grating, depth was induced only when its edges were aligned with the peaks and troughs of the DM flanking surface. These and related results suggest that disparity (or local depth) propagates along horizontal 1-D features, and then a 3-D surface is constructed from the depth samples acquired. The shape of the constructed surface can be different from the inducer, and so surface construction appears to operate on the results of a more local depth propagation process.
Resumo:
Motion discontinuities can signal object boundaries where few or no other cues, such as luminance, colour, or texture, are available. Hence, motion-defined contours are an ecologically important counterpart to luminance contours. We developed a novel motion-defined Gabor stimulus to investigate the nature of neural operators analysing visual motion fields in order to draw parallels with known luminance operators. Luminance-defined Gabors have been successfully used to discern the spatial-extent and spatial-frequency specificity of possible visual contour detectors. We now extend these studies into the motion domain. We define a stimulus using limited-lifetime moving dots whose velocity is described over 2-D space by a Gabor pattern surrounded by randomly moving dots. Participants were asked to determine whether the orientation of the Gabor pattern (and hence of the motion contours) was vertical or horizontal in a 2AFC task, and the proportion of correct responses was recorded. We found that with practice participants became highly proficient at this task, able in certain cases to reach 90% accuracy with only 12 limited-lifetime dots. However, for both practised and novice participants we found that the ability to detect a single boundary saturates with the size of the Gaussian envelope of the Gabor at approximately 5 deg full-width at half-height. At this optimal size we then varied spatial frequency and found the optimum was at the lowest measured spatial frequency (0.1 cycle deg-1 ) and then steadily decreased with higher spatial frequencies, suggesting that motion contour detectors may be specifically tuned to a single, isolated edge.
Hydrophobicity and surface electrostatic charge of conidia of the mycoparasite Coniothyrium minitans
Resumo:
The effect of increasing culture age on cell surface hydrophobicity (CSH) and cell surface electrostatic charge (measured as zeta potential) of conidia from five isolates of Coniothyrium minitans representing three different morphological types was examined. Conidial CSH of three isolates (A2 960/1, CH1 and CH2) decreased with culture age, whereas CSH of two others (B 1300/2 and IMI 134523) remained high for the whole 42 day experimental period. In contrast, cell surface electrostatic charge decreased uniformly in conidia of all five isolates for the first 34 d and then rose slightly at 42 d. The variation in cell surface electrostatic charge (spectrum width) of the sampled conidia decreased with age for all five isolates. In all five isolates cell surface electrostatic charge of conidia became increasingly negative as the pH of the buffer used to suspend conidia was increased from pH 3.0 to 9.0. No relationship between colony morphology of C. minitans and conidial CSH and cell surface electrostatic charge was found.
Resumo:
A range of well-defined hydrophilic methacrylic macromonomers has been synthesized by the judicious combination of atom transfer radical polymerization (ATRP) and copper-catalyzed 1,3-dipolar cycloaddition (azide-alkyne click chemistry). An azido a-functionalized ATRP initiator was used to produce well-defined homopolymers with terminal azide functionality via ATRP in protic media at 20 °C, with generally good control being achieved over both target molecular weight and final polydispersity (Mw/Mn = 1.10-1.35). Suitable methacrylic monomers include 2-aminoethyl methacrylate hydrochloride, 2-(diethylamino)ethyl methacrylate, 2-(dimethylamino)ethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-(methacryloyloxy)ethyl phosphorylcholine, glycerol monomethacrylate, potassium 3-sulfopropyl methacrylate, and quaternized 2-(dimethylamino)ethyl methacrylate. These homopolymer precursors were then efficiently clicked using either propargyl methacrylate or propargyl acrylate to yield near-monodisperse (meth)acrylate-capped macromonomers with either cationic, anionic, nonionic, or zwitterionic character. Moreover, this generic route to well-defined hydrophilic macromonomers is also suitable for “one-pot” syntheses, as exemplified for 2-hydroxyethyl methacrylate and glycerol monomethacrylate-based macromonomers.
Resumo:
Metallocene catalyzed linear low density polyethylene (m-LLDPE) is a new generation of olefin copolymer. Based on the more recently developed metallocene-type catalysts, m-LLDPE can be synthesized with exactly controlled short chain branches and stereo-regular microstructure. The unique properties of these polymers have led to their applications in many areas. As a result, it is important to have a good understanding of the oxidation mechanism of m-LLDPE during melt processing in order to develop more effective stabilisation systems and continue to increase the performance of the material. The primary objectives of this work were, firstly, to investigate the oxidative degradation mechanisms of m-LLDPE polymers having different comonomer (I-octene) content during melt processing. Secondly, to examine the effectiveness of some commercial antioxidants on the stabilisation of m-LLDPE melt. A Ziegler-polymerized LLDPE (z-LLDPE) based on the same comonomer was chosen and processed under the same conditions for comparison with the metallocene polymers. The LLDPE polymers were processed using an internal mixer (torque rheometer, TR) and a co-rotating twin-screw extruder (TSE). The effects of processing variables (time, temperature) on the rheological (MI, MWD, rheometry) and molecular (unsaturation type and content, carbonyl compounds, chain branching) characteristics of the processed polymers were examined. It was found that the catalyst type (metallocene or Ziegler) and comonomer content of the polymers have great impact on their oxidative degradation behavior (crosslinking or chain scission) during melt processing. The metallocene polymers mainly underwent chain scission at lower temperature (<220°C) but crosslinking became predominant at higher temperature for both TR and TSE processed polymers. Generally, the more comonomers the m-LLDPE contains, a larger extent of chain scission can be expected. In contrast, crosslinking reactions were shown to be always dominant in the case of the Ziegler LLDPE. Furthermore, it is clear that the molecular weight distribution (MWD) of all LLDPE became broader after processing and tended generally to be broader at elevated temperatures and more extrusion passes. So, it can be concluded that crosslinking and chain scission are temperature dependent and occur simultaneously as competing reactions during melt processing. Vinyl is considered to be the most important unsaturated group leading to polymer crosslinking as its concentration in all the LLDPE decreased after processing. Carbonyl compounds were produced during LLDPE melt processing and ketones were shown to be the most imp0l1ant carbonyl-containing products in all processed polymers. The carbonyl concentration generally increased with temperature and extrusion passes, and the higher carbonyl content fonned in processed z-LLDPE and m-LLDPE polymers having higher comonomer content indicates their higher susceptibility of oxidative degradation. Hindered phenol and lactone antioxidants were shown to be effective in the stabilization of m-LLDPE melt when they were singly used in TSE extrusion. The combination of hindered phenol and phosphite has synergistic effect on m-LLDPE stabilization and the phenol-phosphite-Iactone mixture imparted the polymers with good stability during extrusion, especially for m-LLDPE with higher comonomer content.
Resumo:
The production of composite particles using dry powder coating is a one-step, environmentally friendly, process for the fabrication of particles with targeted properties and favourable functionalities. Diverse functionalities, such flowability enhancement, content uniformity, and dissolution, can be developed from dry particle coating. In this review, we discuss the particle functionalities that can be tailored and the selection of characterisation techniques relevant to understanding their molecular basis. We address key features in the powder blend sampling process and explore the relevant characterisation techniques, focussing on the functionality delivered by dry coating and on surface profiling that explores the dynamics and surface characteristics of the composite blends. Dry particle coating is a solvent- and heat-free process that can be used to develop functionalised particles. However, assessment of the resultant functionality requires careful selection of sensitive analytical techniques that can distinguish particle surface changes within nano and/or micrometre ranges.
Resumo:
Purpose: Soft contact lenses for continuous wear require the use of cleaning regimes which utilise hydrogen peroxide systems or multipurpose cleaning solutions (MPS). The compositions of MPS are becoming increasingly complex and often include disinfectants, cleaning agents, preservatives, wetting agents, demulcents, chelating and buffering agents. Recent research on solution–lens interactions has focused on specific ocular parameters such as corneal staining. However the effect of a solution on the lens, particularly silicone hydrogel lenses, itself has received less attention. The purpose of this work was to establish and understand the effects that care solutions have on selected bulk and surface material properties. Methods: Selected bulk and surface properties of each material (etafilcon A, vifilcon A, balafilcon A, senofilcon A, lotrafilcon A and lotrafilcon B, galyfilcon A) were measured after a 24 h soak in a variety of care solutions. Additionally the lenses were soaked for 24 h in hyperosmolar (680 mOsm L-1) and hyposmolar (170 mOsm L-1) PBS. A bulk property parameter the total diameter (TD) was measured using an Optimec contact lens analyser. The surface property related CoF of soaked lenses was measured on a nano-tribometer with conditions of load 30 mN, at a distance of 20 mm and speed 30 mm/min. Results: In terms of bulk properties, change is related to the EWC of the lens, the higher the EWC of the lens the greater the TD changes. Silicone hydrogel lenses have EWCs of <47% and little or no TD changes were observed; lotrafilcon A exhibited no change irrespective of the cleaning solution. Conventional contact lenses have higher EWCs (58% for etafilcon A and 55% for vifilcon A) and the TD was seen to change to a greater extent, for example the etafilcon A material in ReNu MPS had an increase to 14.45± 0.07 mm from the cited 14.2 mm. Other lenses increased or decreased in TD depending on the solution used. The osmolarity of the solution although important is not the only factor governing change in the TD, for example soaking senofilcon A in hyperosmolar PBS (680 mOsm L-1) for 24 h increased the TD of the lens (+0.25 ± 0.07 mm), however when the same lens type was soaked for 24 h in a MPS with a lower osmolarity there was a similar effect. Biotribology measurements demonstrated that some solution–lens combinations can reduce the CoF by 55%, when compared with biotribology with the native packing solution. An increase in the CoF was observed for other solution–lens combinations. Conclusions: There is a dramatic difference in bulk and surface performance of specific lens materials with particular care solutions. Individual components of the care solutions have effects on the bulk and surface properties of contact lenses. The affects are not as great with the silicone hydrogel as compared with conventional hydrogels.