49 resultados para Alginate gel microparticles, ibuprofen, gentamicin sulphate, drug release, activity, S. epidermidis, C. albicans


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The initial objective of this work was to evaluate and introduce fabrication techniques based on W/0/W double emulsion and 0/W single emulsion systems with solvent evaporation for the incorporation of a surrogate macromolecule (BSA) into microspheres and microcapsules fabricated using P(HB-HV}, PEA and their blends. Biodegradation, expressed as changes in the gross and ultrastructural morphology of BSA loaded microparticulates with time was monitored using SEM concomitant with BSA release. Spherical microparticulates were successfully fabricated using both the W/0/W and 0/W emulsion systems. Both microspheres and microcapsules released BSA over a period of 24 to 26 days. BSA release from P(HB-HV)20% PCL 11 microcapsules increased steadily with time, while BSA release from all other microparticulates was characterised by an initial lag phase followed by exponential release lasting 6-11 days. Microcapsules were found to biodegrade more rapidly than microspheres fabricated from the same polymer. The incubation of microparticulates in newborn calf serum; synthetic gastric juice and pancreatin solution showed that microspheres and microcapsules were susceptible to enzymatic biodegradation. The in vitro incubation of microparticulates in Hank's buffer demonstrated limited biodegradation of microspheres and microcapsules by simple chemical hydrolysis. BSA release was thought to ocurr as a result of the macromolecule diffusing through either inherent micropores or via pores and channels generated in situ by previously dissolved BSA. However, in all cases, irrespective of percentage loading or fabrication polymer, low encapsulation efficiencies were obtained with W/0/W and 0/W techniques (4.2±0.9%- 15.5±0.5%,n=3), thus restricting the use of these techniques for the generation of microparticulate sustained drug delivery devices. In order to overcome this low encapsulation efficiency, a W/0 single emulsion technique was developed and evaluated in an attempt to minimise the loss of the macromolecule into the continuous aqueous phase and increase encapsulation efficiency. Poly(lactide-co-glycolide) [PLCG] 75:25 and 50:50, PEA alone and PEA blended with PLCG 50:50 to accelerate biodegradation, were used to microencapsulate the water soluble antibiotic vancomycin, a putative replacement for gentamicin in the control of bacterial infection in orthopaedic surgery especially during total hip replacement. Spherical microspheres (17.39±6.89~m,n=74-56.5±13.8~m,n=70) were successfully fabricated with vancomycin loadings of 10, 25 and 50%, regardless of the polymer blend used. All microspheres remained structurally intact over the period of vancomycin release and exhibited high percentage yields( 40. 75±2 .86%- 97.16±4.3%,n=3)and encapsulation efficiencies (47.75±9.0%- 96.74±13.2%,n=12). PLCG 75:25 microspheres with a vancomycin loading of 50% were judged to be the most useful since they had an encapsulation efficiency of 96.74+13.2%, n=12 and sustained therapeutically significant vancomycin release (15-25μg/ml) for up to 26 days. This work has provided the means for the fabrication of a spectrum of prototype biodegradable microparticulates, whose biodegradation has been characterised in physiological media and which have the potential for the sustained delivery of therapeutically useful macromolecules including water soluble antibiotics for orthopaedic applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first clinically proven nicotine replacement product to obtain regulatory approval was Nicorette® gum. It provides a convenient way of delivering nicotine directly to the buccal cavity, thus, circumventing 'first-pass' elimination following gastrointestinal absorption. Since launch, Nicorette® gum has been investigated in numerous studies (clinical) which are often difficult to compare due to large variations in study design and degree of sophistication. In order to standardise testing, in 2000 the European Pharmacopoeia introduced an apparatus to investigate the in vitro release of drug substances from medical chewing gum. With use of the chewing machine, the main aims of this project were to determine factors that could affect release from Nicorette® gum, to develop an in vitro in vivo correlation and to investigate formulation variables on release of nicotine from gums. A standard in vitro test method was developed. The gum was placed in the chewing chamber with 40 mL of artificial saliva at 37'C and chewed at 60 chews per minute. The chew rate, the type of dissolution medium used, pH, volume, temperature and the ionic strength of the dissolution medium were altered to investigate the effects on release in vitro. It was found that increasing the temperature of the dissolution media and the rate at which the gums were chewed resulted in a greater release of nicotine, whilst increasing the ionic strength of the dissolution medium to 80 mM resulted in a lower release. The addition of 0.1 % sodium Jauryl sulphate to the artificial saliva was found to double the release of nicotine compared to the use of artificial saliva and water alone. Although altering the dissolution volume and the starting pH did not affect the release. The increase in pH may be insufficient to provide optimal conditions for nicotine absorption (since the rate at which nicotine is transported through the buccal membrane was found to be higher at pH values greater than 8.6 where nicotine is predominately unionised). Using a time mapping function, it was also possible to establish a level A in vitro in vivo correlation. 4 mg Nicorette® gum was chewed at various chew rates in vitro and correlated to an in vivo chew-out study. All chew rates used in vitro could be successfully used for IVIVC purposes, however statistically, chew rates of 10 and 20 chews per minute performed better than all other chew rates. Finally a series of nicotine gums was made to investigate the effect of formulation variables on release of nicotine from the gum. Using a directly compressible gum base, in comparison to Nicorette® the gums crumbled when chewed in vitro, resulting in a faster release of nicotine. To investigate the effect of altering the gum base, the concentration of sodium salts, sugar syrup, the form of the active drug, the addition sequence and the incorporation of surfactant into the gum, the traditional manufacturing method was used to make a series of gum formulations. Results showed that the time of addition of the active drug, the incorporation of surfactants and using different gum base all increased the release of nicotine from the gum. In contrast, reducing the concentration of sodium carbonate resulted in a lower release. Using a stronger nicotine ion-exchange resin delayed the release of nicotine from the gum, whilst altering the concentration of sugar syrup had little effect on the release but altered the texture of the gum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Liposomes due to their biphasic characteristic and diversity in design, composition and construction, offer a dynamic and adaptable technology for enhancing drug solubility. Starting with equimolar egg-phosphatidylcholine (PC)/cholesterol liposomes, the influence of the liposomal composition and surface charge on the incorporation and retention of a model poorly water soluble drug, ibuprofen was investigated. Both the incorporation and the release of ibuprofen were influenced by the lipid composition of the multi-lamellar vesicles (MLV) with inclusion of the long alkyl chain lipid (dilignoceroyl phosphatidylcholine (C 24PC)) resulting in enhanced ibuprofen incorporation efficiency and retention. The cholesterol content of the liposome bilayer was also shown to influence ibuprofen incorporation with maximum ibuprofen incorporation efficiency achieved when 4 μmol of cholesterol was present in the MLV formulation. Addition of anionic lipid dicetylphosphate (DCP) reduced ibuprofen drug loading presumably due to electrostatic repulsive forces between the carboxyl group of ibuprofen and the anionic head-group of DCP. In contrast, the addition of 2 μmol of the cationic lipid stearylamine (SA) to the liposome formulation (PC:Chol - 16 μmol:4 μmol) increased ibuprofen incorporation efficiency by approximately 8%. However further increases of the SA content to 4 μmol and above reduced incorporation by almost 50% compared to liposome formulations excluding the cationic lipid. Environmental scanning electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology during dehydration to provide an alternative assay of liposome stability. ESEM analysis clearly demonstrated that ibuprofen incorporation improved the stability of PC:Chol liposomes as evidenced by an increased resistance to coalescence during dehydration. These finding suggest a positive interaction between amphiphilic ibuprofen molecules and the bilayer structure of the liposome. © 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microporous polycaprolactone (PCL) matrices loaded with hydrophobic steroidal drugs or a hydrophilic drug - pilocarpine hydrochloride - were produced by precipitation casting using solutions of PCL in acetone. The efficiency of steroid incorporation in the final matrix (progesterone (56 %) testosterone (46 %) dexamethasone (80 %)) depended on the nature of the drug initially co-dissolved in the PCL solution. Approximately 90 % w/w of the initial load of progesterone, 85 % testosterone and 50 % dexamethasone was released from the matrices in PBS at 37°C over 8 days. Pilocarpine hydrochloride (PH)-loaded PCL matrices, prepared by dispersion of powder in PCL solution, released 70-90 % of the PH content over 12 days in PBS. Application of the Higuchi model revealed that the kinetics of steroid and PH release were consistent with a Fickian diffusion mechanism with corresponding diffusion coefficients of 5.8 × 10-9 (progesterone), 3.9 × 10 -9 (testosterone), 7.1 × 10-10 (dexamethasone) and 22 × 10-8 cm2/s (pilocarpine hydrochloride). The formulation techniques described are expected to be useful for production of implantable, insertable and topical devices for sustained delivery of a range of bioactive molecules of interest in drug delivery and tissue engineering.