34 resultados para Bioactivity Alginate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This time of year we look back at the year that has passed and make plans for the next year. I like to reflect on things that I have learnt and people that I have met, especially those who facilitated that learning. In 2009 I went to various conferences, The BCLA conference in Manchester, The Romanian Optical Society meeting in Brasov, Transylvania (where the university is actually on Vlad Tepes Street), The European Council for Optometry and Optics (ECOO) in Brno, Czech Republic, The American Academy of Optometry (AAO) in Orlando USA, The International Association of Contact Lens Educators (IACLE) meeting in Tianjin China and finally The Vereinigung Deutscher Contactlinsen-Spezialisten (VDCO) meeting in Jena. All were interesting places and thoroughly all were enjoyable conferences with their own highlights but I wanted to focus on Jena and one person I met there and his inspirational search for knowledge and the contributions he made in the field of contact lenses. Jena itself is a fascinating place and should be on the ‘must visit’ list of anyone involved in eye care. It is the birth place of Carl Zeiss of course and where he started his company. It is also the birth place of Ernst Abbe (physicist and optometrist and expert lens maker), and Otto Schott (chemist and technologist who made high quality glass. There are many road signs bearing witness to these famous pioneers. The optical museum is worth spending a few hours looking around too. I was invited to speak at the VDCO at the kind invitation from colleagues at the Jena School of Optometry, Professor Wolfgang Sickenberger and Professor Sebastian Marx. At this meeting I met 87-year-old Willi KAUE who was being awarded the Adolf Wilhelm Müller-Welt prize by the VDCO for contribution to contact lenses over his 60-year career. At the age of 15 Willi Kaue took up an apprenticeship to become an Optician in Germany in 1937. At this time he first heard about the scleral glass lenses made by the Carl Zeiss Company in Jena. This started his lifelong fascination which was to become his passion but not yet his career. During the war he was enlisted into military service but immediately after was back to his former career. In 1950 Willi corrected his own 3.5 dioptres of myopia with a plastic scleral lens. His fascination strengthened as for the first time he himself could experience a wider field of view than his spectacles gave him, less aberrations and less retinal minification. He also appreciated the fact that contact lenses did not cause pressure on the nose or ears and did not slide down his nose plus remained optically centred with his eye movements. He decided that form now on he would make fitting contact lenses his career. He travelled to London to learn more about contact lenses and how to fit them but initially did not find many willing teachers and to start with became largely self-taught. He wanted to know how to make scleral lenses. So far he only knew that pulverized polymethyl methacrylate (PMMA) was pressed and moulded. In 1951 he met Berlin optician Otto Marzock. He made his only scleral lenses from using military PMMA windshields. His process involved lathe cutting the lenses and resulted in lenses that were thinner than moulded ones. Willi developed a manufacturing method, using a rotary diamond drill, starting form the outer edge and towards the centre at a constant cut speed. This enabled him to make more reproducible lenses and in less time. His enthusiasm in the field was clear from the travels he made in the pursuit of advancement - travelling around Europe, South America, North America and Asia. In 1963 he visited George Nissel in Hemel Hempstead, England. Constantly thriving towards innovations Willi came across the new Naturalens from the USA made from HEMA at a congress in Marseille in 1969. Amongst his contributions to the field, was his own technique of fitting ocular prosthetics, using an alginate impression of the orbit. I was fortunate enough to have dinner with Willi Kaue and learnt more about his fascinating career through the patient interpreting skills of Hilmar Bussacker (the 2008 winner of the same award and the 2007 winner of the European Federation of the Contact Lens and IOL Industries Award). I look forward to 2010 with eager anticipation as to what I may learn and who I might meet!!! Copyright © 2009 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increasing number of mechano-sensitive ion channels in endothelial cells have been identified in response to blood flow and hydrostatic pressure. However, how these channels respond to flow under different physiological and pathological conditions remains unknown. Our results show that epithelial Na+ channels (ENaCs) colocalize with hemeoxygenase-1 (HO-1) and hemeoxygenase-2 (HO-2) within the caveolae on the apical membrane of endothelial cells and are sensitive to stretch pressure and shear stress. ENaCs exhibited low levels of activity until their physiological environment was changed; in this case, the upregulation of HO-1, which in turn facilitated heme degradation and hence increased the carbon monoxide (CO) generation. CO potently increased the bioactivity of ENaCs, releasing the channel from inhibition. Endothelial cells responded to shear stress by increasing the Na+ influx rate. Elevation of intracellular Na+ concentration hampered the transportation of l-arginine, resulting in impaired nitric oxide (NO) generation. Our data suggest that ENaCs that are endogenous to human endothelial cells are mechano-sensitive. Persistent activation of ENaCs could inevitably lead to endothelium dysfunction and even vascular diseases such as atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives Curcuma zedoaroides A. Chaveerach & T. Tanee, locally known as Wan-Paya-Ngoo-Tua-Mia, is commonly used in the North-Eastern part of Thailand as a 'snakebite antidote'. The aim of this study was to isolate the active compound from the rhizome of C. zedoaroides, to determine its structure and to assess its antagonistic activity in vitro and in vivo against King cobra venom. Methods The active compound was obtained from C. zedoaroides by extraction with acetone followed by purification using column chromatography; its X-ray structure was determined. Its inhibition of venom lethality was studied in vitro in rat phrenic nerve-hemidiaphragms and in vivo in mice. Key findings The acetone extract of the Curcuma rhizomes contained a C20 dialdehyde, [2-(5,5,8a-trimethyl-2-methylene-decahydro-naphthalen-1-yl)-ethylidene] -succinaldehyde, as the major component. The isolated curcuma dialdehyde was found active in vitro and in vivo for antivenin activity against the King cobra venom. Using isolated rat phrenic nerve-hemidiaphragm preparations, a significant antagonistic effect on the inhibition of neuromuscular transmission was observed in vitro. Inhibition on muscle contraction, produced by the 4 μg/ml venom, was reversed by 2-16 μg/ml of Curcuma dialdehyde in organ bath preparations over a period of 2 h. Mice intraperitoneally injected with 0.75 mg/kg venom and dialdehyde at 100 mg/kg had a significantly increased survival time. Injection of Curcuma dialdehyde (100 mg/kg) 30 min before the subcutaneous injection of the venom resulted in a 100% survival time after 2 h compared with 0% for the control group. Conclusions The in vitro and in vivo evaluation confirmed the medicinal use of traditional snake plants against snakebites. The bioactivity is linked to an isolated molecule and not a result of synergistic effects of a mixture. The active compound was isolated and the structure fully elucidated, including its stereochemistry. This dialdehyde is a versatile chemical building block and can be easily obtained from this plant source. © 2010 Royal Pharmaceutical Society of Great Britain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using excessively tilted fiber grating (Ex-TFG) inscribed in standard single mode fiber, we developed a novel label-free immunoassay for specific detection of porcine circovirus type 2 (PCV2), which is a minim animal virus. Staphylococcal protein A (SPA) was used to modify the silanized fiber surface thus forming a SPA layer, which would greatly enhance the proportion of anti-PCV2 monoclonal antibody (MAb) bioactivity, thus improving the effectiveness of specific adsorption and binding events between anti-PCV2 MAbs and PCV2 antigens. Immunoassay experiments were carried out by monitoring the resonance wavelength shift of the proposed sensor under different PCV2 titer levels. Anti-PCV2 MAbs were thoroughly dissociated from the SPA layer by treatment with urea, and recombined to the SPA layer on the sensor surface for repeated immunoassay of PCV2. The specificity of the immunosensor was inspected by detecting porcine reproductive and respiratory syndrome virus (PRRSV) first, and PCV2 subsequently. The results showed a limit of detection (LOD) for the PCV2 immunosensor of ~9.371TCID50/mL, for a saturation value of ~4.801×103TCID50/mL, with good repeatability and excellent specificity.