22 resultados para Porcine circovirus
Resumo:
Background: Cochleostomy formation is a key stage of the cochlear implantation procedure. Minimizing the trauma sustained by the cochlea during this step is thought to be a critical feature in hearing preservation cochlear implantation. The aim of this paper is firstly, to assess the cochlea disturbances during manual and robotic cochleostomy formation. Secondly, to determine whether the use of a smart micro-drill is feasible during human cochlear implantation. Materials and methods: The disturbances within the cochlea during cochleostomy formation were analysed in a porcine specimen by creating a third window cochleostomy, preserving the underlying endosteal membrane, on the anterior aspect of the basal turn of the cochlea. A laser vibrometer was aimed at this third window, to assess its movement while a traditional cochleostomy was performed. Six cochleostomies were performed in total, three manually and three with a smart micro-drill. The mean and peak membrane movement was calculated for both manual and smart micro-drill arms, to represent the disturbances sustained within cochlea during cochleostomy formation. The smart micro-drill was further used to perform live human robotic cochleostomies on three adult patients who met the National Institute of Health and Clinical Excellence criteria for undergoing cochlear implantation. Results: In the porcine trial, the smart micro-drill preserved the endosteal membrane in all three cases. The velocity of movement of the endosteal membrane during manual cochleostomy is approximately 20 times higher on average and 100 times greater in peak velocity, than for robotic cochleostomy. The robot was safely utilized in theatre in all three cases and successfully created a bony cochleostomy while preserving the underlying endosteal membrane. Conclusions: Our experiments have revealed that controlling the force of drilling during cochleostomy formation and opening the endosteal membrane with a pick will minimize the trauma sustained by the cochlea by a factor of 20. Additionally, the smart micro-drill can safely perform a bony cochleostomy in humans under operative conditions and preserve the integrity of the underlying endosteal membrane. © W. S. Maney & Son Ltd 2013.
Resumo:
Sucrose is used as a cryo-preservation agent on large mammalian eyes post formalin fixation and is shown to reduce freezing artefacts allowing the collection of 12-μm thick sections from these large aqueous samples. The suitability of this technique for use in MALDI imaging experiments is demonstrated by the acquisition of the first images of lipid distributions within whole sagittal porcine eye sections. © 2012 John Wiley & Sons, Ltd.
Resumo:
Muscle invasive urinary bladder cancer is one of the most lethal cancers and its detection at the time of transurethral resection remains limited and diagnostic methods are urgently needed. We have developed a muscle invasive transitional cell carcinoma (TCC) model of the bladder using porcine bladder scaffold and the human bladder cancer cell line 5637. The progression of implanted cancer cells to muscle invasion can be monitored by measuring changes in the spectrum of endogenous fluorophores such as reduced nicotinamide dinucleotide (NADH) and flavins. We believe this could act as a useful tool for the study of fluorescence dynamics of developing muscle invasive bladder cancer in patients.
Resumo:
Purpose: We have reported that the changes in the pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. (Miyagawa et al. PLoS One, 2014). This study investigates the changes in the pupillary shapes in response to electrical stimulations of the sclera of peripheral cornea in cats and porcines. Methods: Two enucleated eyes of two cats and three enucleated porcine eyes were studied. Trains of biphasic pulses (current, 3 mA; duration, 2 ms/phase; frequency, 40 Hz) were applied using a tungsten electrode (0.3mm diameter). The stimulation was performed at every 45 degree over the entire circular region on the sclera near the cornea. The pupillary images were recorded before and 4 s (cat) and 10 s (pig) after the stimulation and the change in the pupil diameter (Δr) was quantified. The pupillary images were obtained with a custom-built compact wavefront aberrometer (Uday et al. J Cataract Refract Surg, 2013). Results: In a cat eye, the pupil was dilated by the electrical stimulation at six out of eight orientations (before stimulation pupil diameter r=10.10±0.49 mm, Δr=0.33±0.12 mm). The pupil dilated only toward the electrode (relative eccentricity of the pupil center to the pupil diameter change amount rdec=1.15±0.28). In the porcine eyes, the pupils were constricted by the electrical stimulations at the temporal and nasal orientations (r=10.04±0.57 mm, Δr=1.52±0.70 mm). The pupils contracted symmetrically (rdec=0.30±0.12). Conclusions: With electrical stimulation in the sclera of the peripheral cornea, asymmetric mydriasis in cat eyes and symmetrical miosis in porcine eyes were observed. Under the assumption that the electrical stimulation stimulated both muscles that contribute to the pupil control, our hypothesis proposed here is that the pupil dilator is stronger than the pupil sphincter in cat, and pupil sphincter is stronger than pupil dilator in porcine.
Resumo:
Purpose: We have reported that the changes in the accommodative response to electrical stimulation of the branches of the ciliary nerves in cats. (Miyagawa et al, PLoS One, 2014). We have also reported that no robust accommodative responses to the electrical stimulations of the sclera of peripheral cornea (SSPC) were observed in enucleated porcine eyes (Mihashi et al, VPOptics, 2014). In this study, accommodative responses to SSPC stimulation in cats and porcines were investigated. Methods: Two eyes of two cats under anesthesia and after they were sacrificed were studied. Three enucleated porcine eyes obtained from a local slaughterhouse were also studied. Trains of biphasic pulses (current, 3 mA; duration, 2 ms/phase; frequency, 40 Hz) were applied using a tungsten electrode (0.3mm diameter) from several orientations. Wavefront sensing with a compact wavefront aberrometer (Uday et al J Cataract Refract Surg, 2013) were performed before and 4 s (cat) and 10 s (pig) after the stimulations and wavefront aberrations including spherical errors were analyzed over a 4-mm pupil area. Results: In the first cat under anesthesia, at three out of seven stimulus positions, 0.2 D hyperopic accommodative responses were observed and in two orientations, myopic responses were observed. For the other cat, weak accommodative responses including astigmatic changes were observed. In the sacrificed condition of the second cat, 0.1 D myopic response was observed for one stimulus orientation and the smaller responses were observed at six out of eight stimulus positions. No accommodative responses were elicited for the enucleated porcine eyes. Conclusions: In the anesthetized cats, electrical stimulation of the SSPC induced accommodative responses; the responses were unstable and weaker than the responses by the ciliary nerve stimulations we observed in our previous study. Small accommodative responses were observed after one of two cats had been sacrificed, but no accommodative responses were detected in the enucleated porcine eyes. Further studies are needed to confirm difference in the accommodation functions in the two species.
Resumo:
INTRODUCTION: Vascular endothelial growth factor (VEGF)-induced angiogenesis requires endothelial nitric oxide synthase (eNOS) activation, however, the mechanism is largely unknown. As nitric oxide(NO) inhibits endothelial proliferation to promote capillary formation (Am J Path,159:993-1008,2001) and p21WAF1 is an important cell cycle inhibitor, we hypothesised that eNOS-induced angiogenesis requires up regulation of p21WAF1. METHODS: Human and porcine endothelial cells were cultured on growth factor reduced Materigel for in vitro tube formation and in vivo angiogenesis was assessed by hind limb ligation ischemia model.Conversely, we propose that the cytoprotective enzyme, heme oxygenase-1(HO-1), may suppress p21WAF1 to limit angiogenesis. RESULTS: The expression of p21WAF1 was up regulated in porcine aorticenothelial cells stablely transfected with a constitutively activated form of eNOS (eNOSS1177D) as well as in HUVEC infected by adenovirus encoding eNOSS1177D. When these cells were plated on growth-factor reduced Matrigel (compaired to empty vector), they enhanced in vitro angiogenesis, which was inhibited following knockdown of p21WAF1. Furthermore, over expression of p21WAF1 led to increased tube formation while p21WAF1 knockdown abrogated vascular endothelial growth factor(VEGF) and fibroblast growth factor (FGF-2) mediated angiogenesis.Conversely, the cytoprotective enzyme, heme oxygenase-1 (HO-1) when over expressed decreased p21WAF1 expression and reduced VEGF, FGF-2 and eNOSS1177D-induced angiogenesis. CONCLUSIONS: These results demonstrate that eNOS-induced angiogenesis requires up regulation of p21WAF1/CIP1 wherease, induction of HO-1 will decrease the expression of p21WAF1/CIP1 to limit angiogenesisindicating that eNOS and HO-1 regulate angiogenesis via p21WAF1/CIP1 in adiametrically opposed manner and that p21WAF1/CIP1 appears to be a central regulator of angiogenesis that offers a new therapeutic target.
Resumo:
Clinical translation of BCRP inhibitors have failed due to neurotoxicity and novel approaches are required to identify suitable modulators of BCRP to enhance CNS drug delivery. In this study we examine 18 compounds, primarily phytochemicals, as potential novel modulators of AhR-mediated regulation of BCRP expression and function in immortalised and primary porcine brain microvascular endothelial cells as a mechanism to enhance CNS drug delivery. The majority of modulators possessed a cellular viability IC50 > 100 µM in both cell systems. BCRP activity, when exposed to modulators for 1 hour, was diminished for most modulators through significant increases in H33342 accumulation at < 10 µM with 2,6,4-trimethoflavone increasing H33342 intracellular accumulation by 3.7–6.6 fold over 1–100 µM. Western blotting and qPCR identified two inducers of BCRP (quercetin and naringin) and two down-regulators (17-β-estradiol and curcumin) with associated changes in BCRP efflux transport function further confirmed in both cell lines. siRNA downregulation of AhR resulted in a 1.75 ± 0.08 fold change in BCRP expression, confirming the role of AhR in the regulation of BCRP. These findings establish the regulatory role AhR of in controlling BCRP expression at the BBB and confirm quercetin, naringin, 17-β-estradiol, and curcumin as novel inducers and down-regulators of BCRP gene, protein expression and functional transporter activity and hence potential novel target sites and candidates for enhancing CNS drug delivery.