16 resultados para YEAST ISO-1-CYTOCHROME-C

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palynological analyses were performed on 53 surface sediment samples from the North Pacific Ocean, including the Bering and Okhotsk Seas (37-64°N, 144°E-148°W), in order to document the relationships between the dinocyst distribution and sea-surface conditions (temperatures, salinities, primary productivity and sea-ice cover). Samples are characterized by concentrations ranging from 18 to 143816 cysts/cm**3 and the occurrence of 32 species. A canonical correspondence analysis (CCA) was carried out to determine the relationship between environmental variables and the distribution of dinocyst taxa. The first and second axes represent, respectively, 47% and 17.8% of the canonical variance. Axis 1 is positively correlated with all parameters except to the sea-ice and primary productivity in August, which are on the negative side. Results indicate that the composition of dinocyst assemblages is mostly controlled by temperature and that all environmental variables are correlated together. The CCA distinguishes 3 groups of dinocysts: the heterotrophic taxa, the genera Impagidinium and Spiniferites as well as the cyst of Pentapharsodinium dalei and Operculodinium centrocarpum. Five assemblage zones can be distinguished: 1) the Okhotsk Sea zone, which is associated to temperate and eutrophic conditions, seasonal upwellings and Amur River discharges. It is characterized by the dominance of O. centrocarpum, Brigantedinium spp. and Islandinium minutum; 2) the Western Subarctic Gyre zone with subpolar and mesotrophic conditions due to the Kamchatka Current and Alaska Stream inflows. Assemblages are dominated by Nematosphaeropsis labyrinthus, Pyxidinopsis reticulata and Brigantedinium spp.; 3) the Bering Sea zone, depicting a subpolar environment, influenced by seasonal upwellings and inputs from the Anadyr and Yukon Rivers. It is characterized by the dominance of I. minutum and Brigantedinium spp.; 4) the Alaska Gyre zone with temperate conditions and nutrient-enriched surface waters, which is dominated by N. labyrinthus and Brigantedinium spp. and 5) the Kuroshio Extension-North Pacific-Subarctic Current zone characterized by a subtropical and oligotrophic environment, which is dominated by O. centrocarpum, N. labyrinthus and warm taxa of the genus Impagidinium. Transfer functions were tested using the modern analog technique (MAT) on the North Pacific Ocean (= 359 sites) and the entire Northern Hemisphere databases ( = 1419 sites). Results confirm that the updated Northern Hemisphere database is suitable for further paleoenvironmental reconstructions, and the best results are obtained for temperatures with an accuracy of +/-1.7 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Identifying plant communities that are resistant to climate change will be critical for developing accurate, wide-scale vegetation change predictions. Most northern plant communities, especially tundra, have shown strong responses to experimental and observed warming. 2. Experimental warming is a key tool for understanding vegetation responses to climate change. We used open-top chambers to passively warm an evergreen-shrub heath by 1.0-1.3 °C for 15 years at Alexandra Fiord, Nunavut, Canada (79 °N). In 1996, 2000 and 2007, we measured height, plant composition and abundance with a point-intercept method. 3. Experimental warming did not strongly affect vascular plant cover, canopy height or species diversity, but it did increase bryophyte cover by 6.3% and decrease lichen cover by 3.5%. Temporal changes in plant cover were more frequent and of greater magnitude than changes due to experimental warming. 4. Synthesis. This evergreen-shrub heath continues to exhibit community-level resistance to long-term experimental warming, in contrast to most Arctic plant communities. Our findings support the view that only substantial climatic changes will alter unproductive ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corticosterone, the main stress hormone in birds, mediates resource allocation, allowing animals to adjust their physiology and behaviour to changes in the environment. Incubation is a time and energy-consuming phase of the avian reproductive cycle. It may be terminated prematurely, when the parents' energy stores are depleted or when environmental conditions are severe. In this study, the effects of experimentally elevated baseline corticosterone levels on the parental investment of incubating male Adelie penguins were investigated. Incubation duration and reproductive success of 60 penguins were recorded. The clutches of some birds were replaced by dummy eggs, which recorded egg temperatures and rotation rates, enabling a detailed investigation of incubation behaviour. Corticosterone levels of treated birds were 2.4-fold higher than those of controls 18 days post treatment. Exogenous corticosterone triggered nest desertion in 61% of the treated birds; consequently reducing reproductive success, indicating that corticosterone can reduce or disrupt parental investment. Regarding egg temperatures, hypothermic events became more frequent and more pronounced in treated birds, before these birds eventually abandoned their nest. The treatment also significantly decreased incubation temperatures by 1.3 °C and lengthened the incubation period by 2.1 days. However, the number of chicks at hatching was similar among successful nests, regardless of treatment. Weather conditions appeared to be particularly important in determining the extent to which corticosterone levels affected the behaviour of penguins, as treated penguins were more sensitive to severe weather conditions. This underlines the importance of considering the interactions of organisms with their environment in studies of animal behaviour and ecophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1-MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records. Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave's catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. d13C and d18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (~0.7-0.1 ka BP) that was ~1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. 'Hendy tests' indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ~3.5 to 2.5 and from ~0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent episodes of mass mortalities in the Mediterranean Sea have been reported for the closely related marine sponges Ircinia fasciculata and I. variabilis, which live in sympatry. In this context, the assessment of the genetic diversity, bottlenecks and connectivity of these sponges has become urgent in order to evaluate the potential effects of mass mortalities on their latitudinal range. Our study aims to establish 1.) the genetic structure, connectivity, and signs of bottlenecks across the populations of I. fasciculata, and 2.) the hybridization levels between I. fasciculata and I. variabilis. To accomplish the first objective, 194 individuals of I. fasciculata from 12 locations across the Mediterranean were genotyped at 14 microsatellite loci. For the second objective, mitochondrial cytochrome c oxidase subunit I sequences of 16 individuals from both species were analyzed along with genotypes at 12 microsatellite loci of 40 individuals coexisting in 3 Mediterranean populations. We detected strong genetic structure along the Mediterranean for I. fasciculata, with high levels of inbreeding in all locations and bottleneck signs in most locations. Oceanographic barriers like the Almeria-Oran front, North-Balearic front, and the Ligurian-Thyrrenian barrier seem to be impeding gene flow for I. fasciculata, adding population divergence to the pattern of isolation by distance derived from the low dispersal abilities of sponge larvae. Hybridization between both species occurred in some populations, which might be increasing genetic diversity and somewhat palliating the genetic loss caused by population decimation in I. fasciculata

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planktic foraminiferal faunas and modern analogue technique estimates of sea surface temperature (SST) for the last 1 million years (Myr) are compared between core sites to the north (ODP 1125, 178 faunas) and south (DSDP 594, 374 faunas) of the present location of the Subtropical Front (STF), east of New Zealand. Faunas beneath cool subtropical water (STW) north of the STF are dominated by dextral Neogloboquadrina pachyderma, Globorotalia inflata, and Globigerina bulloides, whereas faunas to the south are strongly dominated by sinistral N. pachyderma (80-95% in glacials), with increased G. bulloides (20-50%) and dextral N. pachyderma (15-50%) in interglacials (beneath Subantarctic Water, or SAW). Canonical correspondence analysis indicates that at both sites, SST and related factors were the most important environmental influences on faunal composition. Greater climate-related faunal fluctuations occur in the south. Significant faunal changes occur through time at both sites, particularly towards the end of the mid-Pleistocene climate transition, MIS18-15 (e.g., decline of Globorotalia crassula in STW, disappearance of Globorotalia puncticulata in SAW), and during MIS8-5. Interglacial SST estimates in the north are similar to the present day throughout the last 1 Myr. To the south, interglacial SSTs are more variable with peaks 4-7 °C cooler than present through much of the early and middle Pleistocene, but in MIS11, MIS5.5, and early MIS1, peaks are estimated to have been 2-4 °C warmer than present. These high temperatures are attributed to southward spread of the STF across the submarine Chatham Rise, along which the STF appears to have been dynamically positioned throughout most of the last 1 Myr. For much of the last 1 Myr, glacial SST estimates in the north were only 1-2 °C cooler than the present interglacial, except in MIS16, MIS8, MIS6, and MIS4-2 when estimates are 4-7 °C cooler. These cooler temperatures are attributed to jetting of SAW through the Mernoo Saddle (across the Chatham Rise) and/or waning of the STW current. To the south, glacial SST estimates were consistently 10-11 °C cooler than present, similar to temperatures and faunas currently found in the vicinity of the Polar Front. One interpretation is that these cold temperatures reflect thermocline changes and increased Circumpolar Surface Water spinning off the Subantarctic Front as an enhanced Bounty Gyre along the south side of the Chatham Rise. For most of the last 1 Myr, the temperature gradient across the STF has been considerably greater than the present 4 °C. During glacial episodes, the STF in this region did not migrate northwards, but instead there was an intensification of the temperature gradient across it (interglacials 4-11 °C; glacials 8-14 °C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7 °C) and hypercapnia- (0.2 kPa CO2) acclimation vs. control conditions (1 °C, 0.04 kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2.