84 resultados para Scale Composition

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large-scale compositional domains at DSDP/ODP drill sites 417A, 417D and 418A were analyzed for O, Sr and Nd isotope ratios, and REE, U, K, Rb and Sr abundances, to constrain the bulk chemical composition of the oceanic crust that is recycled at subduction zones. The combination of the three sites gives the composition of the upper oceanic crust in this region over a distance of about 8 km. The d18O(SMOW) and 87Sr/86Sr(meas) of compositional domains 10-100 m in size correlate well, with a range of 7.7-19.2 and 0.70364-0.70744, and mean of 9.96 and 0.70475, respectively. The Rb inventory of the upper crust increases by about an order of magnitude, while Sr contents remain constant. U abundances increase moderately under oxidizing alteration conditions and nearly triple in the commonly reducing alteration environments of the upper oceanic crust. REEs are influenced by alteration only to a small extent, and recycled oceanic crust is similar to MORB with respect to 143Nd/144Nd. Even though the average composition of the upper oceanic crust is well defined, the large scale composition varies widely. Highly altered compositional domains may not have a large impact on the average composition of the oceanic crust, but they may preferentially contribute to fluids or partial melts derived from the crust by prograde metamorphic reactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marine dissolved organic matter (DOM) represents one of the largest active carbon reservoirs on Earth. Changes in pool size or composition could have major impacts on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. Here we show that ocean acidification as expected for a 'business-as-usual' emission scenario in the year 2100 (900 µatm) does not affect the DOM pool with respect to its size and molecular composition. We applied ultrahigh-resolution mass spectrometry to monitor the production and turnover of 7,360 distinct molecular DOM features in an unprecedented long-term mesocosm study in a Swedish Fjord, covering a full cycle of marine production. DOM concentration and molecular composition did not differ significantly between present-day and year 2100 CO2 levels. Our findings are likely applicable to other coastal and productive marine ecosystems in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge (Rabinowitz and LaBrecque, 1979 doi:10.1029/JB084iB11p05973, Moore et al. (1983 doi:10.1130/0016-7606(1983)94<907:TWRTDS>2.0.CO;2). The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and coraistent with formation at the paleo mid-ocean ridge (Moore et al., 1983). The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other. The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 207Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high 87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher 143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and mineralogical compositions of ferromanganese oxide coatings on rocks dredged from the New England Seamounts, the Sierra Leone Rise and the Mid-Atlantic Ridge near the Equator have been determined in an investigation of regional differences in Atlantic ferromanganese deposits. Most encrustations are clearly of hydrogenous origin, consisting mainly of todorokite and delta MnO2, but several recovered from the equatorial fracture zones may be hydrothermal accumulations. Differences in the chemistry of the water column and in growth rates of the ferromanganese coatings may be important in producing this regional contrast in composition. Fine-scale changes in element abundances within the encrustations indicate that the nature of the substrate has little influence on compositional variations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrabasic rock samples collected from two areas of the crustal zone of the Mid-Atlantic Ridge (MAR): (1) 13-17°N (near the intersection of the ridge axis with the 15°20'N prime fracture zone), and (2) 33°40'N prime (the western intersection of the MAR crest with the Heis fracture zone) were objects of this study. Samples of peridotite and of plutonic and volcanic rocks associated with it were used to measure their Sm/Nd, 143Nd/144Nd, and 147Sm/144Nd ratios, which allowed to test time and genetic relationships between evolution of mantle material under the ridge crest and products of its magmatic activity. Results of this work proved ubiquitous discrepancy between melting degree values of extremely depleted mantle peridotites in the MAR area between 14°N and 16°N, obtained using petrologic and geochemical methods. This discrepancy suggests large-scale interaction between mantle material and magmatic melts and fluids enriched in incompatible elements or fluids. The results obtained suggest that repeated melting of the mantle under the axial MAR zone is an universal characteristic of magmatism in low-velocity spreading centers. The results of this study also proved the crestal MAR zone in the Central Atlantic region show distinct indications of isotope-geochemical segmentation of the mantle. It is suggested that the geochemically anomalous MAR mantle peridotite in the zone of the MAR intersection with the 15°20'N prime fracture zone can be interpreted as fragments of mantle substrate, foreign for the Atlantic mantle north of the equator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace dement data are used to establish the nature and extent of spatial and temporal chemical variations in basalts erupted in the Iceland region of the North Atlantic Ocean. The ocean floor samples are those recovered by legs 38 and 49 of the Deep Sea Drilling Project. Within each of the active zones on Iceland there are small scale variations in the light rare earth elements and ratios such as K/Y: several central complexes and their associated fissure swarms erupt basalts with values of K/Y distinct from those erupted at adjacent centres; also basalts showing a wide range of immobile trace element ratios occur together within single vertical sections and ocean floor drill holes. Although such variations can be explained in terms of the magmatic processes operating on Iceland they make extrapolations from single basalt samples to mantle sources underlying the outcrop of the sample highly tenuous. 87Sr/86Sr ratios measured for 25 of the samples indicate a total range from 0.7028 in a tholeiite from the Reykjanes Ridge to 0.7034 in an alkali basalt from Iceland and are consistent with other published ratios from the region. A positive correlation between 87Sr/86Sr and Ce/Yb ratios indicates the existence of systematic isotopic and elemental variations in the mantle source region. An approximately fivefold variation in Ce/Yb ratio observed in basalts with the same 87Sr/86Sr ratio implies that different degrees and types of partial melting have been involved in magma genesis from a single mantle composition. 87Sr/86Sr ratios above 0.7028, Th/U ratios close to 4 and La/Ta ratios close to 10 distinguish most basalts erupted in this part of the North Atlantic Ocean from normal mid-ocean ridge basalt (N-type MORB) - although N-type MORB has been erupted at extinct spreading axes just to the north and northeast of Iceland as well as the presently active Iceland-Jan Mayen Ridge. Comparisons with the hygromagmatophile element and radiogenic isotope ratios of MORB and the estimated primordial mantle indicate that the mantle sources producing Iceland basalts have undergone previous depletion followed by more recent enrichment events. A veined mantle source region is proposed in preference to the mantle plume model to explain the chemical variations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation of the quantitative composition of the coarse (> 40 µm) and clay (< 2 µm) fraction of HPC 532, DSDP Leg 75, in 1300 m water depth on the eastern Walvis Ridge off Southwest Africa yielded the following results: (1) The sediments reflect a complete Latest Miocene to Recent depositional history. Sedimentation rates vary between 2.3 and 7.8 cm/ka. (2) Preservation of calcium carbonate is subject to strong variations: short-term (< 100,000 years) and long-term (about 1 m.y.) cycles in carbonate dissolution have been observed, with strongest dissolution occurring during periods of lowered sea level. (3) Upwelling influence from the near-coastal upwelling centre has been detected by means of the opal content: interglacial periods show high opal contents, because the Benguela Current turned westward at about 20°S and carried opal-laden upwelled water to the west. Sediments from glacial periods, however, show opal minima. Besides these short-term cyclic variations in opal content, long-term cycles have been found, with maximum upwelling influence in the latest Pliocene/early Quaternary. (4) Each CaCO3 dissolution minimum (maximum) is correlated with an opal maximum (minimum) throughout the sediment sequence. (5) The oceanographic system off southwest Africa remained essentially unchanged since the latest Miocene: sea level rose and fell periodically on a small and on a large scale, and the Benguela Current flowed southeast-northwest and turned to the west at the latitude of Site 532 during interglacial periods, when sea level was high. (6) The climate in the near-coastal area of southwest Africa in the latitude of Site 532 has probably been arid throughout the investigated period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and isotopic (Nd and Sr) compositions have been determined for 12 Cretaceous basaltic samples (108 Ma old) from Holes 417D and 418A of Legs 51,52 and 53. We have found that: (1) The chemical compositions are typical of MORB. They do not vary systematically with the stratigraphic positions of the analyzed samples; thus, the chemical evolution is independent of the eruption sequence that occurred at this Cretaceous ridge. (2) REE patterns for all rocks are characterized by a strong LREE depletion with (La/Sm)N = 0.38-0.50; no significant Eu anomalies are found; HREE are nearly flat or slightly depleted towards Yb-Lu and have 12-18 * chondritic abundances. Combining the results of previous studies, it suggests that no significant temporal and spatial variation in magma chemistry (especially for LIL elements) has occurred in the 'normal' ridge segments over the last 150 Ma. (3) lsotopically, 143Nd/144Nd ratios vary from 0.513026 to 0.513154, corresponding to epsilon-Nd(0) = +7.5 to +10, and they fall in the typical range of MORB. However, these rocks have unexpectedly high 87Sr/86Sr ratios (0.70355-0.70470) which are attributed to the result of seawater-rock interaction. (4) The Nd model ages (Tin), ranging from 1.53 to 2.47 (average 2.06) AE, suggest that the upper mantle source(s) underwent a large scale chemical differentiation leading to LREE and other LIL element depletion about 2 AE ago, assuming a simple two-stage model. More realistically, the variation in Tm(Nd) or epsilon-Nd could be derived from mixing of heterogeneous mantle sources that were a consequence of continuous mantle differentiation and continental formation. (5) Because of the low mg values (0.52-0.63), the analyzed basaltic rocks do not represent primary liquids of mantle melting. The variation in La/Sm ratios and TiO2 are not compatible with a model in which all rocks are genetically related by a simple fractional crystallization. Rather, it is proposed that the basaltic rocks might have been derived from some heterogeneous upper mantle source with or without later magmatic mixing, and followed by some shallow-level fraetionations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 >=98 wt%. This contrast in SiO2 (and Si/Al) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and Si/Al ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert. The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2 reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnO/Al2O3 ratios that no longer record the depositional signal of the precursor sediment. REE data indicate only subtle diagenetic fractionation across the rare earth series. Ce/Ce* values do not change significantly during diagenesis of either Monterey or DSDP chert. Eu/Eu* decreases slightly during formation of DSDP chert. Normative La/Yb is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REE/Al ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detailed structure and timing of the penultimate deglaciation are insufficiently defined yet critical for understanding mechanisms responsible for abrupt climate change. Here we present oxygen isotope records (from planktonic and benthic foraminifera) at unprecedented resolution encompassing late marine oxygen isotope stage (MIS) 6 and Termination II (ca. 150-120 ka) from the Santa Barbara Basin, supported by additional southern California margin records, a region highly sensitive to millennial-scale climate oscillations during the last deglaciation. These records reveal millennial- and centennial-scale climate variability throughout the interval, including an interstadial immediately preceding the deglaciation, a brief warm event near the beginning of Termination II, and a Bølling-Allerød-Younger Dryas-like climate oscillation midway through the deglaciation. Recognition of these events in an oxygen isotope record from a 230Th-dated stalagmite allows the adoption of this radiometric chronology for the California margin records. This chronology supports the Milankovitch theory of deglaciation. The suborbital history of climate variability during Termination II may account for records of early deglaciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensification of North Pacific Intermediate Water during the Younger Dryas and stadials of the last glacial episode has been advocated by Kennett and his colleagues based on studies of ventilation history in Santa Barbara Basin. Because Santa Barbara Basin is a semi-isolated marginal basin, this hypothesis requires testing in sequences on the upper continental margin facing the open-ocean of the Pacific. Ocean Drilling Program Site 1017 is located on the upper slope of southern California off Point Conception close to the entrance of Santa Barbara Basin, an ideal location to test the hypothesis of late Quaternary switching in intermediate waters. We examined chemical and mineral composition, sedimentary structures, and grain size of hemipelagic sediments representing the last 80 k.y. at this site to detect changes in behavior of intermediate waters. We describe distinct compositional and textual variations that appear to reflect changes in grain size in response to flow velocity fluctuations of bottom waters. Qualitative estimates of changes in degree of pyritization indicate better ventilation of bottom water during intervals of stronger bottom-water flow. Comparison between variations in the sediment parameters and the planktonic d18O record indicates intensified bottom-current activity during the Younger Dryas and stadials of marine isotope Stage 3. This result strongly supports the hypothesis of Kennett and his colleagues. Our investigation also suggests strong grain-size control on organic carbon content (and to less extent carbonate carbon content). This, in turn, suggests the possibility that organic carbon content of sediments, which is commonly used as an indicator of surface productivity, can be influenced by bottom currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples obtained in Hole 803D for shipboard determination of index properties were analyzed to determine their microfossil constituents. The resulting data are compared to shipboard-measured physical properties data to assess the relationships between small-scale fluctuations in physical properties and microfossil content and preservation. The establishment of relationships involving index properties of these highly calcareous sediments is difficult because of the role of intraparticle porosity. Relationships were observed between calculated interparticle porosity and microfossil content. Impedance, calculated using bulk density based on interparticle porosity, exhibits an increase with increasing grain size. Variations in the coarse fraction constituents appear to exert more control over physical properties than variations in the fine-fraction constituents, although the fine fraction make up greater than 85% of the samples by weight.