8 resultados para Flowers and flower culture. Ornamental plants

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO4-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the role lemmings play in structuring plant communities and their contribution to the 'greening of the Arctic', we measured plant cover and biomass in 50 + year old lemming exclosures and control plots in the coastal tundra near Barrow, Alaska. The response of plant functional types to herbivore exclusion varied among land cover types. In general, the abundance of lichens and bryophytes increased with the exclusion of lemmings, whereas graminoids decreased, although the magnitude of these responses varied among land cover types. These results suggest that sustained lemming activity promotes a higher biomass of vascular plant functional types than would be expected without their presence and highlights the importance of considering herbivory when interpreting patterns of greening in the Arctic. In light of the rapid environmental change ongoing in the Arctic and the potential regional to global implications of this change, further exploration regarding the long-term influence of arvicoline rodents on ecosystem function (e.g. carbon and energy balance) should be considered a research priority.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frost flowers have been proposed to be the major source of sea-salt aerosol to the atmosphere during polar winter and a source of reactive bromine during polar springtime. However little is known about their bulk chemical composition or microstructure, two important factors that may affect their ability to produce aerosols and provide chemically reactive surfaces for exchange with the atmosphere. Therefore, we chemically analyzed 28 samples of frost flowers and parts of frost flowers collected from sea ice off of northern Alaska. Our results support the proposed mechanism for frost flower growth that suggests water vapor deposition forms an ice skeleton that wicks brine present on newly grown sea ice. We measured a high variability in sulfate enrichment factors (with respect to chloride) in frost flowers and seawater from the vicinity of freezing sea ice. The variability in sulfate indicates that mirabilite precipitation (Na2SO4 x 10 H2O) occurs during frost flower growth. Brine wicked up by frost flowers is typically sulfate depleted, in agreement with the theory that frost flowers are related to sulfate-depleted aerosol observed in Antarctica. The bromide enrichment factors we measured in frost flowers are within error of seawater composition, constraining the direct reactive losses of bromide from frost flowers. We combined the chemical composition measurements with temperature observations to create a conceptual model of possible scenarios for frost flower microstructure development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In groundwater-fed fen peatlands, the surface biomass decays rapidly and, as a result, highly humified peat is formed. A high degree of humification constrains palaeoecological studies because reliable identification of plant remains is hampered. Organic geochemistry techniques as a means of identifying historical plant communities have been successfully applied tobog peat. The method has also been applied to fen peat, but without reference to the composition of fen plants. We have applied selected organic geochemistry methods to determine the composition of the neutral lipid fractions from 12 living fen plants, to investigate the potential for the distributions to characterize and separate different fen plants and plant groups. Our results show correspondence with previous studies, e.g. C23 and C25n-alkanes dominating Sphagnum spp. and C27 to C31 alkanes dominating vascular plants. However, we also found similarities in n-alkane distributions between Sphagnum spp. and the below ground parts of some vascular plants. We tested the efficiency of different n-alkane ratios to separate species and plant groups. The ratios used for bog studies (e.g. n-C23/n-C25 and n-C23/n-C29) did not work as consistently for fen plants. Some differences in sterol distribution were found between vascular plants and mosses; in general vascular plants had a higher concentration of sterols. When distributions of n-alkanes, n-alkane ratios and sterols were all included as variables, redundancy analysis (RDA) separated different plant groups into their own clusters. Our results imply that the pattern for bog biomarkers cannot directly be applied to fen environments. Nevertheless, they encourage further testing to determine whether or not the identification of plant groups, plants or plant parts from highly humified peat is possible by applying fen species-specific biomarker proxies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frost flowers, intricate featherlike crystals that grow on refreezing sea ice leads, have been implicated in lower atmospheric chemical reactions. Few studies have presented chemical composition information for frost flowers over time and many of the chemical species commonly associated with Polar tropospheric reactions have never been reported for frost flowers. We undertook this study on the sea ice north of Barrow, Alaska to quantify the major ion, stable oxygen and hydrogen isotope, alkalinity, light absorbance by soluble species, organochlorine, and aldehyde composition of seawater, brine, and frost flowers. For many of these chemical species we present the first measurements from brine or frost flowers. Results show that major ion and alkalinity concentrations, stable isotope values, and major chromophore (NO3- and H2O2) concentrations are controlled by fractionation from seawater and brine. The presence of these chemical species in present and future sea ice scenarios is somewhat predictable. However, aldehydes, organochlorine compounds, light absorbing species, and mercury (part 2 of this research and Sherman et al. (2012, doi:10.1029/2011JD016186)) are deposited to frost flowers through less predictable processes that probably involve the atmosphere as a source. The present and future concentrations of these constituents in frost flowers may not be easily incorporated into future sea ice or lower atmospheric chemistry scenarios. Thinning of Arctic sea ice will likely present more open sea ice leads where young ice, brine, and frost flowers form. How these changing ice conditions will affect the interactions between ice, brine, frost flowers and the lower atmosphere is unknown.