285 resultados para Composite Fouling, Calcium Oxalate, Amorphous Silica, Sugar Mill Evaporator, Modeling

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of Fe, Mn, P, Ti, Cu, Ni, Co, V, Cr, W, Mo, and As in the surface sediment layer on the section from the Hawaiian Islands to the coast of Mexico (Mexico section) is studied. Contents of all studied elements increase from biogenic-terrigenous sediments off the coast of Mexico to pelagic red clays of the Northeast Basin, and more sharply for mobile elements - Mn, Mo, Cu, Ni, Co, and As. In near Hawaii sediments rich in coarsely fragmented volcanic-terrigenous and pyroclastic material of basaltic composition with high contents of Ti, Fe, V, Cr, W, and P, contents of these elements increase sharply, and contents of Mn, Mo, Ni, Co, and Cu for the same reason decrease sharply in comparison with red clay. Abnormally high contents of Mn, Mo, Cu, Ni, Co, and As in the upper layer of hemipelagic and transition sediments of the Mexico section result from diagenetic redistribution and their accumulation on the surface. Processes of diagenetic redistribution in hemipelagic and transition sediment mass of the Mexico section are more rapid than in similar sediments of the Japan section due lower sedimentation rates and higher initial concentrations of Mn. Basic similarity of element distribution regularities in sediments of Japan and Mexico sections is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 15-meter sequence of early Aptian organic-matter-rich sediments, cored at Deep Sea Drilling Project Site 463 (western Mid-Pacific Mountains) has been submitted for detailed mineralogical studies (XRD, SEM) and organiccarbon characterization. Although intense diagenesis has obscured the sedimentary record of depositional conditions, the history has been tentatively reconstructed. Through sustained volcanic activity and alteration processes on the archipelago, large amounts of silica were released into the sea water, resulting in a "bloom" of radiolarians. Hard parts settled in large amounts, yielding a hypersiliceous sediment; amorphous silica was diagenetically transformed into chalcedony, opal-CT and clinoptilolite through dissolution and recrystallization. Oxidization of part of the radiolarian soft parts (1) depleted the sea water in dissolved oxygen, allowing the burial of organic matter, and (2) generated carbon dioxide which led to dissolution of most of the calcareous tests. Moderate depositional depth and a high sedimentation rate are though to have prevailed during this episode. An immature stage of evolution is assigned to the studied organic matter, which is of two origins: autochthonous marine material, and allochthonous humic compounds and plant debris. Rhythmic sedimentation characterizes the distribution of the organic matter; each sequence shows (1) an upward progressive increase in organic-carbon content, and (2) an upward enrichment in marine organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distributions of calcium carbonate, of amorphous silica, and of 21 chemical compounds and elements in sediments of Holes 515A, 515B, 516, 516F, 517, and 518 are highly nonuniform; they change depending on the sediment types, grain size, and mineral composition. The main source of the lithogenous elements (K, Li, Rb, Fe, Ti, Zr, Ni, Cr, Sn) is terrigenous matter of South America. These elements correlate well or at least satisfactorily with each other and with the sum of clay minerals. CaCO3, amorphous SiO2 and organic C form a second group, the main source of which is biota of the ocean. Zn, Cu, Ba, Mo, (V, Na) are a third group, which is supplied by both terrigenous and biogenic matter. Judging by the distribution of chemical elements and components in sediments of Site 515, this area of the Brazil Basin is characterized by the rather constant conditions of pelagic terrigenous sedimentation from upper Eocene till Holocene. Small changes in chemical composition of sediments throughout the section are linked mainly to the evolution of subaerial source provinces, changes in hydrodynamic regime, and fluctuations of the ocean level. The chemical composition of sediments from the Rio Grande Rise sites suggests the existence of three main stages of sedimentation in this area. The first stage is the initial period of sediment accumulation on basalts at the beginning of the Late Cretaceous. Then followed sedimentary conditions notable for their sharp changes in chemical composition and type. Beginning in the middle Eocene and persisting into the Holocene, stable conditions of sedimentation characterize a third stage, represented by the formation of approximately 700 m of nannofossil oozes of rather monotonous chemical composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid-sulfate alteration of basalt by SO2-bearing volcanic vapors has been proposed as one possible origin for sulfate-rich deposits on Mars. To better define mineralogical signatures of acid-sulfate alteration, laboratory experiments were performed to investigate alteration pathways and geochemical processes during reaction of basalt with sulfuric acid. Pyroclastic cinders composed of phenocrysts including plagioclase, olivine, and augite embedded in glass were reacted with sulfuric acid at 145 °C for up to 137 days at a range of fluid : rock ratios. During the experiments, the phenocrysts reacted rapidly to form secondary products, while the glass was unreactive. Major products included amorphous silica, anhydrite, and Fe-rich natroalunite, along with minor iron oxides/oxyhydroxides (probably hematite) and trace levels of other sulfates. At the lowest fluid : rock ratio, hexahydrite and an unidentified Fe-silicate phase also occurred as major products. Reaction-path models indicated that formation of the products required both slow dissolution of glass and kinetic inhibitions to precipitation of a number of minerals including phyllosilicates and other aluminosilicates as well as Al- and Fe-oxides/oxyhydroxides. Similar models performed for Martian basalt compositions predict that the initial stages of acid-sulfate alteration of pyroclastic deposits on Mars should result in formation of amorphous silica, anhydrite, Fe-bearing natroalunite, and kieserite, along with relict basaltic glass. In addition, analysis of the experimental products indicates that Fe-bearing natroalunite produces a Mössbauer spectrum closely resembling that of jarosite, suggesting that it should be considered an alternative to the component in sulfate-rich bedrocks at Meridiani Planum that has previously been identified as jarosite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on chemical-thermodynamical balances the species distributions and mineral stabilities of the chemical compositions of the pressed pore solutions taken from a Baltic Sea mudsediment are evualuated by means of the computer program WATEQF (PLUMMER et al., 1976). According to these evaluations calcite and aragonite are to be found in supersaturation throughout the whole profile. The SiO2 concentration of the pore solutions is mainly controlled by the dissolutions of amorphous silica present in minimal undersaturation. By means of SEM pictures idiomorph quartzcrystals as well as presumptive clay minerals transformation and reformations could be proved as stable transformation phases of the dissolved SiO2 species. The stability of the solid phases containing Al-components as of feldspars and clayminerals decreases with increasing dept and is mainly controlled by AIF3 complexes higher concentrated with increasing depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the eastern flank of the Juan de Fuca Ridge, reaction between upwelling basement fluid and sediment alters hydrothermal fluxes of Ca, SiO2(aq), SO4, PO4, NH4, and alkalinity. We used the Global Implicit Multicomponent Reactive Transport (GIMRT) code to model the processes occurring in the sediment column (diagenesis, sediment burial, fluid advection, and multicomponent diffusion) and to estimate net seafloor fluxes of solutes. Within the sediment section, the reactions controlling the concentrations of the solutes listed above are organic matter degradation via SO4 reduction, dissolution of amorphous silica, reductive dissolution of amorphous Fe(III)-(hydr)oxide, and precipitation of calcite, carbonate fluorapatite, and amorphous Fe(II)-sulfide. Rates of specific discharge estimated from pore-water Mg profiles are 2 to 3 mm/yr. At this site the basement hydrothermal system is a source of NH4, SiO2(aq), and Ca, and a sink of SO4, PO4, and alkalinity. Reaction within the sediment column increases the hydrothermal sources of NH4 and SiO2(aq), increases the hydrothermal sinks of SO4 and PO4, and decreases the hydrothermal source of Ca. Reaction within the sediment column has a spatially variable effect on the hydrothermal flux of alkalinity. Because the model we used was capable of simulating the observed pore-water chemistry by using mechanistic descriptions of the biogeochemical processes occurring in the sediment column, it could be used to examine the physical controls on hydrothermal fluxes of solutes in this setting. Two series of simulations in which we varied fluid flow rate (1 to 100 mm/yr) and sediment thickness (10 to 100 m) predict that given the reactions modeled in this study, the sediment section will contribute most significantly to fluxes of SO4 and NH4 at slow flow rates and intermediate sediment thickness and to fluxes of SiO2(aq) at slow flow rates and large sediment thickness. Reaction within the sediment section could approximately double the hydrothermal sink of PO4 over a range of flow rates and sediment thickness, and could slightly decrease (by

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monograph summarizes results of studies of hydrothermal fields on the ocean floor, hydrothermal plumes and metalliferous sediments. Hydrothermal ore manifestations formed in different geodynamic settings, with different character of volcanism in different facial conditions of deposition are described. Causes of non-uniformity of hydrothermal system functioning in different parts of the ocean and therefore variability of hydrothermal deposits are under consideration. On the base of found relationships of these irregularities with geodynamics, volcanism and sedimentation a new classification of hydrothermal processes and genetic models of hydrothermal ore formation in the ocean have been created. Regularities of hydrothermal sedimentary material dispersion in bottom waters are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mineralogical and geochemical study of samples from Sites 642, 643, and 644 enabled us to reconstruct several aspects of the Cenozoic paleoenvironmental evolution (namely volcanism, climate, hydrology) south of the Norwegian Sea and correlate it with evolution trends in the northeast Atlantic. Weathering products of early Paleogene volcanic material at Rockall Plateau, over the Faeroe-Iceland Ridge and the Voring Plateau indicate a hot and moist climate (lateritic environment) existed then. From Eocene to Oligocene, mineralogical assemblages of terrigenous sediments suggest the existence of a warm but somewhat less moist climate at that time than during the early Paleogene. At the beginning of early Miocene, climatic conditions were warm and damp. The large amounts of amorphous silica in Miocene sediment could indicate an important flux of silica from the continent then, or suggest the formation of upwelling. Uppermost lower Miocene and middle to upper Miocene clay assemblages suggest progressive cooling of the climate from warm to temperate at that time. At the end of early Miocene, hydrological exchanges between the North Atlantic and the Norwegian Sea became intense and gave rise to an important change in the mineralogy of deposits. From Pliocene to Pleistocene, the variable mineralogy of deposits reflects alternating glacial/interglacial climatic episodes, a phenomenon observed throughout the North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineralogy and geochemistry of low-temperature hydrothermal manifestations occurring on the surface of basalts and in their cracks within a submarine volcano in the north-eastern part of the Kuril deep-sea basin have been studied. The following order of isolation of mineral phases has been found out: Fe-rich sulphides (pyrite) - Fe-rich layered silicates (hydromica of celadonite-nontronite type) - amorphous silica (opal) - Fe-oxyhydroxides (goethite) - Mn-oxyhydroxides (vernadite). Sulphide mineralization is of the phenocryst-stockwork type. Finding of pure barite fragments does not exclude presence of hydrothermal exhalations (smokers) on this volcanic structure.