17 resultados para Affects

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising levels of CO2 in the atmosphere have led to increased CO2 concentrations in the oceans. This enhanced carbon availability to the marine primary producers has the potential to change their nutrient stoichiometry, and higher carbon to nutrient ratios are expected. As a result, the quality of the primary producers as food for herbivores may change. Here, we present experimental work showing the effect of feeding Rhodomonas salina grown under different pCO2 (200, 400 and 800 µatm) on the copepod Acartia tonsa. The rate of development of copepodites decreased with increasing CO2 availability to the algae. The surplus carbon in the algae was excreted by the copepods, with younger stages (copepodites) excreting most of their surplus carbon through respiration, and adult copepods excreting surplus carbon mostly as DOC. We consider the possible consequences of different excretory pathways for the ecosystem. A continued increase in the CO2 availability for primary production, together with changes in the nutrient loading of coastal ecosystems, may cause changes in the trophic links between primary producers and herbivores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the effect of near-future CO2 levels (= 490, 570, 700, and 960 µatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 µatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 µatm CO2 (control). In contrast, juveniles reared at 700 and 960 µatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 µatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 µatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator-prey interactions and commercial fisheries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactive effects of nutrient availability and ocean acidification on coral calcification were investigated using post-settlement juvenile corals of Acropora digitifera cultured in nutrient-sufficient or nutrient-depleted seawater for 4 d and then exposed to seawater with different partial pressure of carbon dioxide () conditions (38.8 or 92.5 Pa) for 10 d. After the nutrient pretreatment, corals in the high nutrient condition (HN corals) had a significantly higher abundance of endosymbiotic algae than did those in the low nutrient condition (LN corals). The high abundance of endosymbionts in HN corals was reduced as a result of subsequent seawater acidification, and the chlorophyll a per algal cell increased. The photosynthetic oxygen production rate by endosymbionts was enhanced by the acidified seawater regardless of the nutrient treatment, indicating that the reduction in endosymbiont density in HN corals due to acidification was compensated for by the increase in chlorophyll a per cell. Though the photosynthetic rate increased in the acidified conditions for both LN and HN corals, the calcification rate significantly decreased for LN corals but not for HN corals. The acquisition of nutrients from seawater, rather than the increase in alkalinity caused by photosynthesis, might effectively alleviate the negative response of coral calcification to seawater acidification, suggesting that the response of corals and their endosymbionts to ocean acidification can be influenced by nutrient conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the ecological implications of global climate change requires investigations of not only the direct effects of environmental change on species performance but also indirect effects that arise from altered species interactions. We performed CO2 perturbation experiments to investigate the effects of ocean acidification on the trophic interaction between the brown seaweed Fucus vesiculosus and the herbivorous isopod Idotea baltica. We predicted faster growth of F. vesiculosus at elevated CO2-concentrations and higher carbon content of the algal tissue. We expected that I. baltica has different consumption rates on algae that have been grown at different CO2 levels and that the isopods remove surplus carbon metabolically by enhanced respiration. Surprisingly, growth of F. vesiculosus as well as the C:N-ratio of the algal tissue were reduced at high CO2-levels. The changes in the elemental composition had no effect on the consumption rates and the respiration of the herbivores. An additional experiment showed that consumption of F. vesiculosus by the isopod Idotea emarginata was independent of ocean acidification and temperature. Our results could not reveal any effects of ocean acidification on the per capita strength of the trophic interaction between F. vesiculosus and its consumers. However, reduced growth of the algae at high CO2-concentrations might reduce the capability of the seaweed to compensate losses due to intense herbivory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are strongly affected by season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain-specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 ºC. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 ºC. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube elements cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC:POC, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC:POC-temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to less coccolith malformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an effect of anthropogenic CO2 emissions, the chemistry of the world's oceans is changing. Understanding how this will affect marine organisms and ecosystems are critical in predicting the impacts of this ongoing ocean acidification. Work on coral reef fishes has revealed dramatic effects of elevated oceanic CO2 on sensory responses and behavior. Such effects may be widespread but have almost exclusively been tested on tropical reef fishes. Here we test the effects elevated CO2 has on the reproduction and early life history stages of a temperate coastal goby with paternal care by allowing goby pairs to reproduce naturally in an aquarium with either elevated (ca 1400 µatm) CO2 or control seawater (ca 370 µatm CO2). Elevated CO2 did not affect the occurrence of spawning nor clutch size, but increased embryonic abnormalities and egg loss. Moreover, we found that elevated CO2 significantly affected the phototactic response of newly hatched larvae. Phototaxis is a vision-related fundamental behavior of many marine fishes, but has never before been tested in the context of ocean acidification. Our findings suggest that ocean acidification affects embryonic development and sensory responses in temperate fishes, with potentially important implications for fish recruitment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to explore evaluated the effects of the increased of hydrostatic pressure on a defined bacterial community on aggregates formed from an axenic culture of marine diatoms by simulating sedimentation to the deep sea by increase of hydrostatic pressure up to 30 bar (equivalent to 3000 m water depth) against control at ambient surface pressure. Our hypothesis was that microbial colonization and community composition and thus microbial OM turnover is greatly affected by changes in hydrostatic pressure during sinking to the deep ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO2 partial pressures (pCO2; 38.5 Pa vs. 101.3 Pa CO2) under low and high light (50 vs. 300 µmol photons/m**2 /s). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed to the influence of OA and light on the redox equilibria of NAD and NADP, which function as major sensors for energization and stress. This generic mode of action of OA may therefore provoke similar cell-physiological responses in other protists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification is predicted to have widespread implications for marine bivalve mollusks. While our understanding of its impact on their physiological and behavioral responses is increasing, little is known about their reproductive responses under future scenarios of anthropogenic climate change. In this study, we examined the physiological energetics of the Manila clam Ruditapes philippinarum exposed to CO2-induced seawater acidification during gonadal maturation. Three recirculating systems filled with 600 L of seawater were manipulated to three pH levels (8.0, 7.7, and 7.4) corresponding to control and projected pH levels for 2100 and 2300. In each system, temperature was gradually increased ca. 0.3 °C per day from 10 to 20 °C for 30 days and maintained at 20 °C for the following 40 days. Irrespective of seawater pH levels, clearance rate (CR), respiration rate (RR), ammonia excretion rate (ER), and scope for growth (SFG) increased after a 30-day stepwise warming protocol. When seawater pH was reduced, CR, ratio of oxygen to nitrogen, and SFG significantly decreased concurrently, whereas ammonia ER increased. RR was virtually unaffected under acidified conditions. Neither temperature nor acidification showed a significant effect on food absorption efficiency. Our findings indicate that energy is allocated away from reproduction under reduced seawater pH, potentially resulting in an impaired or suppressed reproductive function. This interpretation is based on the fact that spawning was induced in only 56% of the clams grown at pH 7.4. Seawater acidification can therefore potentially impair the physiological energetics and spawning capacity of R. philippinarum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine phytoplankton can evolve rapidly when confronted with aspects of climate change because of their large population sizes and fast generation times. Despite this, the importance of environment fluctuations, a key feature of climate change, has received little attention-selection experiments with marine phytoplankton are usually carried out in stable environments and use single or few representatives of a species, genus or functional group. Here we investigate whether and by how much environmental fluctuations contribute to changes in ecologically important phytoplankton traits such as C:N ratios and cell size, and test the variability of changes in these traits within the globally distributed species Ostreococcus. We have evolved 16 physiologically distinct lineages of Ostreococcus at stable high CO2 (1031±87?µatm CO2, SH) and fluctuating high CO2 (1012±244?µatm CO2, FH) for 400 generations. We find that although both fluctuation and high CO2 drive evolution, FH-evolved lineages are smaller, have reduced C:N ratios and respond more strongly to further increases in CO2 than do SH-evolved lineages. This indicates that environmental fluctuations are an important factor to consider when predicting how the characteristics of future phytoplankton populations will have an impact on biogeochemical cycles and higher trophic levels in marine food webs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical role played by copepods in ocean ecology and biogeochemistry warrants an understanding of how these animals may respond to ocean acidification (OA). Whilst an appreciation of the potential direct effects of OA, due to elevated pCO2, on copepods is improving, little is known about the indirect impacts acting via bottom-up(food quality) effects. We assessed, for the first time, the chronic effects of direct and/or indirect exposures to elevated pCO2 on the behaviour, vital rates, chemical and biochemical stoichiometry of the calanoid copepod Acartia tonsa. Bottom-up effects of elevated pCO2 caused species-specific biochemical changes to the phytoplanktonic feed, which adversely affected copepod population structure and decreased recruitment by 30 %. The direct impact of elevated pCO2 caused gender-specific respiratory responses in A.tonsa adults, stimulating an enhanced respiration rate in males (> 2-fold), and a suppressed respiratory response in females when coupled with indirect elevated pCO2 exposures. Under the combined indirect+direct exposure, carbon trophic transfer efficiency from phytoplankton-to-zooplankton declined to < 50 % of control populations, with a commensurate decrease in recruitment. For the first time an explicit role was demonstrated for biochemical stoichiometry in shaping copepod trophic dynamics. The altered biochemical composition of the CO2-exposed prey affected the biochemical stoichiometry of the copepods, which could have ramifications for production of higher tropic levels, notably fisheries. Our work indicates that the control of phytoplankton and the support of higher trophic levels involving copepods have clear potential to be adversely affected under future OA scenarios.