214 resultados para NORTHEAST


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on the N2O contents of marine sea water from the Northeast Atlantic Ocean are presented. The N2O content of marine air is rather constant. The data are in accordance with earlier measurements. The sea water down to depth greater tha 1000 meters is considerably aupersaturated with N2O with respect to air. Supersaturation values obtain from surface water allow the conclusion that part of the North Atlantic acts as a net cource of atmospheric N2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. ATP in deep-sea sediments can be determined after it is adsorbed on a mixture of the sediment and calcium carbonate by measuring the luminescence of the reaction of the mixture and luciferin-luciferase. 2. ATP contents of the toplayer of northeastern Atlantic sediments (Josephine Bank and northern Canary Basin) decrease with increasing depths of 252, 408, 1445, 1769, 2149, 4897, 5510m: 0.96, 0.61, 0.13, 0.10, 0.21, 0.05, 0.07 µg ATP/ml wet sediment. The decreasing values are in accordance with the decrease of macrobenthos and meiobenthos biomass in the deep-sea. 3. The ATP content of deep-sea nematodes is about 1 ? of their wet weight. 4. At the two deepest stations, less than 50% of the ATP measured in the sediment is represented by nematodes, copepods, other "hard" meiofauna groups and bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At a longtime station near the "Grosse Meteor Bank" in the North Atlantic 41 subsequent hauls were made in April 1967 with the Helgoland larva net with changing bucket device. In addition 9 hauls were made during July 1967. The catches from the depth ranges of 900-700 m, 700-500 m, 500-300 m, 300-200 m, 200-100 m, and 100-0 m were collected in separate buckets during each catch series. Contamination, though possible on principle, does not seem to be of much consequence in appendicularia. After some comments on certain species caught it is shown that at this station in the open ocean the density of appendicularia not only varies with the season, but that clouds of plankton may pass by it within a few hours, in which the density may vary at a ratio of ten or more to one. In the composition of species as many as four species may in turn be the most abundant. For one species the composition as to size and stage of maturity may change in the same way. Regarding the depth distribution there are no species restricted to deeper layers. Below 100 m the number falls to about 1 % of the uppermost layer. Oikopkura longicauda, O. cophocerca, O.parva and Althoffia tumida as well as Fritillaria species are found between 900 and 100 m in comparatively higher numbers than Stegosoma magnum, Oikopleura albicans and O. intermedia. The Chaetognaths were collected in the depth of 900-0 m in vertical hauls with the Helgoland larva net with changing bucket device; buckets had been changed in the depth of 700, 500, 300, 200,1 00 m. In the course of the investigation it appeared that for Chaetognaths the sampling method with changing bucket device is insufficient. Many specimens remained in the net and entered the bucket at a higher level than that in which they had lived, mostly during flushing the net (sample 100-0 m); this means considerable contamination. In spite of this difficulty deep layers of higher abundance could be traced for Sagitta lyra and some other species. For some species large local variations in the number of specimens within a short time were found. Moreover notes have been made of foodorganisms, parasits and anatornic metamorphoses during maturing.