4 resultados para fracture

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

East Antarctic ice discharged by Byrd Glacier continues as a flowband to the calving front of the Ross Ice Shelf. Flow across the grounding line changes from compressive to extensive as it leaves the fjord through the Transantarctic Mountains occupied by Byrd Glacier. Magnitudes of the longitudinal compressive stress that suppress opening of transverse tensile cracks are calculated for the flowband. As compressive back stresses diminish, initial depths and subsequent growth of these cracks, and their spacing, are calculated using theories of elastic and ductile fracture mechanics. Cracks are initially about one millimeter wide, with approximately 30 in depths and 20 in spacings for a back stress of 83 kPa at a distance of 50 kin beyond the fjord, where floating ice is 600 in thick. When these crevasses penetrate the whole ice thickness, they release tabular icebergs 20 kin to 100 kin wide, spaced parallel to the calving front of the Ross Ice Shelf

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dike swarms consisting of tens to thousands of subparallel dikes are commonly observed at Earth's surface, raising the possibility of simultaneous propagation of two or more dikes at various stages of a swarm's development. The behavior of multiple propagating dikes differs from that of a single dike owing to the interacting stress fields associated with each dike. We analyze an array of parallel, periodically spaced dikes that grow simultaneously from an overpressured source into a semi-infinite, linear elastic host rock. To simplify the analysis, we assume steady state (constant velocity) magma flow and dike propagation. We use a perturbation method to analyze the coupled, nonlinear problem of multiple dike propagation and magma transport. The stress intensity factor at the dike tips and the opening displacements of the dike surfaces are calculated. The numerical results show that dike spacing has a profound effect on the behavior of dike propagation. The stress intensity factors at the tips of parallel dikes decrease with a decrease in dike spacing and are significantly smaller than that for a single dike with the same length. The reduced stress intensity factor indicates that, compared to a single dike, propagation of parallel dikes is more likely to be arrested under otherwise the same conditions. It also implies that fracture toughness of the host rock in a high confining pressure environment may not be as high as inferred from the propagation of a single dike. Our numerical results suggest fracture toughness values on the order of 100 MPa root m. The opening displacements for parallel dikes are smaller than that for a single dike, which results in higher magma pressure gradients in parallel dikes and lower flux of magma transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a fracture-mechanics-based formulation to investigate primary oil migration through the propagation of an array of periodic, parallel fractures in a sedimentary rock with elevated pore fluid pressure. The rock is assumed to be a linearly elastic medium. The fracture propagation and hence oil migration velocity are determined using a fracture mechanics criterion together with the lubrication theory of fluid mechanics. We find that fracture interactions have profound effects on the primary oil migration behavior. For a given fracture length, the mass flux of oil migration decreases dramatically with an increase in fracture density. The reduced oil flux is due to the decreased fracture propagation velocity as well as the narrowed fracture opening that result from the fracture interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crevasses can be ignored in studying the dynamics of most glaciers because they are only about 20 m deep, a small fraction of ice thickness. In ice shelves, however, s urface crevasses 20 m deep often reach sealevel and bottom crevasses can move upward to sea-level (Clough, 1974; Weertman, 1980). The ice shelf is fractured completely through if surface and basal crevasses meet (Barrett, 1975; Hughes, 1979). This is especially likely if surface melt water fills surface crevasses (Weertman, 1973; Pfeffer, 1982; Fastook and Schmidt, 1982). Fracture may therefore play an important role i n the disintegration of ice shelves. Two fracture criteria which can be evaluated experimentally and applied to ice shelves, are presented. Fracture is then examined for the general strain field of an ice shelf and for local strain fields caused by shear rupture alongside ice streams entering the ice shelf, fatigue rupture along ice shelf grounding lines, and buckling up-stream from ice rises. The effect of these fracture patterns on the stability of Antarctic ice shelves and the West Antarctic ice sheet is then discussed.