2 resultados para energy balance

em DigitalCommons - The University of Maine Research


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Barry Saltzman was a giant in the fields of meteorology and climate science. A leading figure in the study of weather and climate for over 40 yr, he has frequently been referred to as the "father of modern climate theory." Ahead of his time in many ways, Saltzman made significant contributions to our understanding of the general circulation and spectral energetics budget of the atmosphere, as well as climate change across a wide spectrum of time scales. In his endeavor to develop a unified theory of how the climate system works, lie played a role in the development of energy balance models, statistical dynamical models, and paleoclimate dynamical models. He was a pioneer in developing meteorologically motivated dynamical systems, including the progenitor of Lorenz's famous chaos model. In applying his own dynamical-systems approach to long-term climate change, he recognized the potential for using atmospheric general circulation models in a complimentary way. In 1998, he was awarded the Carl-Gustaf Rossby medal, the highest honor of the American Meteorological Society "for his life-long contributions to the study of the global circulation and the evolution of the earth's climate." In this paper, the authors summarize and place into perspective some of the most significant contributions that Barry Saltzman made during his long and distinguished career. This short review also serves as an introduction to the papers in this special issue of the Journal of Climate dedicated to Barry's memory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the behavior of large outlet glaciers draining the Greenland Ice Sheet is critical for assessing the impact of climate change on sea level rise. The flow of marine-terminating outlet glaciers is partly governed by calving-related processes taking place at the terminus but is also influenced by the drainage of surface runoff to the bed through moulins, cracks, and other pathways. To investigate the extent of the latter effect, we develop a distributed surface-energy-balance model for Helheim Glacier, East Greenland, to calculate surface melt and thereby estimate runoff. The model is driven by data from an automatic weather station operated on the glacier during the summers of 2007 and 2008, and calibrated with independent measurements of ablation. Modeled melt varies over the deployment period by as much as 68% relative to the mean, with melt rates approximately 77% higher on the lower reaches of the glacier trunk than on the upper glacier. We compare melt variations during the summer season to estimates of surface velocity derived from global positioning system surveys. Near the front of the glacier, there is a significant correlation (on >95% levels) between variations in runoff (estimated from surface melt) and variations in velocity, with a 1 day delay in velocity relative to melt. Although the velocity changes are small compared to accelerations previously observed following some calving events, our findings suggest that the flow speed of Helheim Glacier is sensitive to changes in runoff. The response is most significant in the heavily crevassed, fast-moving region near the calving front. The delay in the peak of the cross-correlation function implies a transit time of 12-36 h for surface runoff to reach the bed.