2 resultados para E. coli K-12

em DigitalCommons - The University of Maine Research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air mass trajectories in the Southern Hemisphere provide a mechanism for transport to and deposition of volcanic products on the Antarctic ice sheet from local volcanoes and from tropical and subtropical volcanic centers. This study extends the detailed record of Antarctic, South American, and equatorial volcanism over the last 12,000 years using continuous glaciochemical series developed from the Siple Dome A (SDMA) ice core, West Antarctica. The largest volcanic sulfate spike ( 280 mu g/L) occurs at 5881 B. C. E. Other large signals with unknown sources are observed around 325 B. C. E. ( 270 mu g/L) and 2818 B. C. E. ( 191 mu g/L). Ages of several large equatorial or Southern Hemisphere volcanic eruptions are synchronous with many sulfate peaks detected in the SDMA volcanic ice chemistry record. The microprobe "fingerprinting'' of glass shards in the SDMA core points to the following Antarctic volcanic centers as sources of tephra found in the SDMA core: Balenny Island, Pleiades, Mount Berlin, Mount Takahe, and Mount Melbourne as well as Mount Hudson and possibly Mount Burney volcanoes of South America. Identified volcanic sources provide an insight into the poorly resolved transport history of volcanic products from source volcanoes to the West Antarctic ice sheet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron and ion microprobe data on two samples of welshite from the type locality of Langban, Sweden, gave analytical totals of 99.38-99.57 wt.% and BeO contents of 4.82-5.11 wt.%, corresponding to 1.692-1.773 Be/20 O. Mossbauer and optical spectra of one of these samples gave Fe-[iv](3+)/Sigma Fe = 0.91, Fe-[iv](2+)/Sigma Fe = 0.09, and no evidence of Mn3+. The resulting formula for this sample is Ca2Mg3.8Mn0.62+Fe0.12+Sb1.55+O2[Si2.8Be1.7Fe0.653+Al0.7As0.17O18], and that for the second sample, Ca2Mg3.8Mn0.12+Fe0.12+F0.83+Sb1.25+O2[Si2.8Be1.8F0.653+Al0.25As0.25O18], is related by the substitution involving tetrahedral and octahedral sites: 0.59([vi,iv])(Fe,Al)(3+) approximate to 0.42([vi])(Mg,Mn,Fe)(2+) + 0.21(Sb-[vi],As-[iv])(5+), i.e. 3([vi,iv]) M3+ = 2([vi])M(2+) + M-[vi,iv](5+). WelShite is distinctive among aenigmatite-group minerals in the high proportion of Fe 3+ in tetrahedral coordination and is unique in its Be content, substantially exceeding 1Be per formula unit. Given the cation distributions in other minerals related to aenigmatite, we think it is reasonable to assume that at least one tetrahedral site is >50% occupied by Be and that one octahedral site is >50% occupied by Sb, so that welshite should be retained as a distinct species with its own name in the aenigmatite group.