2 resultados para tooth brushing

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The histology of healing in a tooth extraction socket has been described in many studies. The focus of research in bone biology and healing is now centered on molecular events that regulate repair of injured tissue. Rapid progress in cellular and molecular biology has resulted in identification of many signaling molecules (growth factors and cytokines) associated with formation and repair of skeletal tissues. Some of these include members of the transforming growth factor-β superfamily (including the bone morphogenetic proteins), fibroblast growth factors, platelet derived growth factors and insulin like growth factors. ^ Healing of a tooth extraction socket is a complex process involving tissue repair and regeneration. It involves chemotaxis of appropriate cells into the wound, transformation of undifferentiated mesenchymal cells to osteoprogenitor cells, proliferation and differentiation of committed bone forming cells, extracellular matrix synthesis, mineralization of osteoid, maturation and remodeling of bone. Current data suggests that these cellular events are precisely controlled and regulated by specific signaling molecules. A plethora of cytokines; have been identified and studied in the past two decades. Some of these like transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factors (FGFs) are well conserved proteins involved in the initial response to injury and repair in soft and hard tissue. ^ The purpose of this study was to characterize the spatial and temporal localization of TGF-βl, VEGF, PDGF-A, FGF-2 and BMP-2, and secretory IgA in a tooth extraction socket model, and evaluate correlation of spatial and temporal changes of these growth factors to histological events. The results of this study showed positive correlation of histological events to spatial and temporal localization of TGF-β1, BMP-2, FGF-2, PDGF-A, and VEGF in a rabbit tooth extraction model. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of dentition is a fascinating process that involves a complex series of epithelial-mesenchymel signaling interactions. That such a precise process frequently goes awry is not surprising. Indeed, tooth agenesis is one of the most commonly inherited disorders in humans that affects up to twenty percent of the population and imposes significant functional, emotional and financial burdens on patients. Mutations in the paired box domain containing transcription factor PAX9 result in autosomal dominant tooth agenesis that primarily involves posterior dentition. Despite these advances, little is known about how PAX9 mediates key signaling actions in tooth development and how aberrations in PAX9 functions lead to tooth agenesis. As an initial step towards providing evidence for the pathogenic role of mutant PAX9 proteins, I performed a series of molecular genetic analyses aimed at resolving the structural and functional defects produced by a number of PAX9 mutations causing non-syndromic posterior tooth agenesis. It is likely that the pathogenic mechanism underlying tooth agenesis for the first two mutations studied (219InsG and IIe87Phe) is haploinsufficiency. For the six paired domain missense mutations studied, the lack of functional defects observed for three of the mutant proteins suggests that these mutations altered PAX9 function through alternate mechanisms. Next, I explored further the nature of the partnership between Pax9 and the Msx1 homeoprotein and their role in the expression of a downstream effector molecule, Bmp4. When viewed in the context of events occurring in dental mesenchyme, the results of these studies indicate that the Pax9-Msx1 protein interaction involves the localized up-regulation of Bmp4 activity that is mediated by synergistic interactions between the two transcription factors. Importantly, these assays corroborate in vivo data from mouse genetic studies and support reports of Pax9-dependent expression of Bmp4 in dental mesenchyme. Taken together, these results suggest that PAX9 mutations cause an early developmental defect due to an inability to maintain the inductive potential of dental mesenchyme through involvement in a pathway involving Msx1 and Bmp4. ^