10 resultados para task performance
em DigitalCommons@The Texas Medical Center
Resumo:
This paper introduces an extended hierarchical task analysis (HTA) methodology devised to evaluate and compare user interfaces on volumetric infusion pumps. The pumps were studied along the dimensions of overall usability and propensity for generating human error. With HTA as our framework, we analyzed six pumps on a variety of common tasks using Norman’s Action theory. The introduced method of evaluation divides the problem space between the external world of the device interface and the user’s internal cognitive world, allowing for predictions of potential user errors at the human-device level. In this paper, one detailed analysis is provided as an example, comparing two different pumps on two separate tasks. The results demonstrate the inherent variation, often the cause of usage errors, found with infusion pumps being used in hospitals today. The reported methodology is a useful tool for evaluating human performance and predicting potential user errors with infusion pumps and other simple medical devices.
Resumo:
Several studies have shown that children with spina bifida meningomyelocele (SBM) and hydrocephalus have attention problems on parent ratings and difficulties in stimulus orienting associated with a posterior brain attention system. Less is known about response control and inhibition associated with an anterior brain attention system. Using the Gordon Vigilance Task (Gordon, 1983), we studied error rate, reaction time, and performance over time for sustained attention, a key anterior attention function, in 101 children with SBM, 17 with aqueductal stenosis (AS; another condition involving congenital hydrocephalus), and 40 typically developing controls (NC). In SBM, we investigated the relation between cognitive attention and parent ratings of inattention and hyperactivity and explored the impact of medical variables. Children with SBM did not differ from AS or NC groups on measures of sustained attention, but they committed more errors and responded more slowly. Approximately one-third of the SBM group had attention symptoms, although parent attention ratings were not associated with task performance. Hydrocephalus does not account for the attention profile of children with SBM, which also reflects the distinctive brain dysmorphologies associated with this condition.
Resumo:
Objective Interruptions are known to have a negative impact on activity performance. Understanding how an interruption contributes to human error is limited because there is not a standard method for analyzing and classifying interruptions. Qualitative data are typically analyzed by either a deductive or an inductive method. Both methods have limitations. In this paper a hybrid method was developed that integrates deductive and inductive methods for the categorization of activities and interruptions recorded during an ethnographic study of physicians and registered nurses in a Level One Trauma Center. Understanding the effects of interruptions is important for designing and evaluating informatics tools in particular and for improving healthcare quality and patient safety in general. Method The hybrid method was developed using a deductive a priori classification framework with the provision of adding new categories discovered inductively in the data. The inductive process utilized line-by-line coding and constant comparison as stated in Grounded Theory. Results The categories of activities and interruptions were organized into a three-tiered hierarchy of activity. Validity and reliability of the categories were tested by categorizing a medical error case external to the study. No new categories of interruptions were identified during analysis of the medical error case. Conclusions Findings from this study provide evidence that the hybrid model of categorization is more complete than either a deductive or an inductive method alone. The hybrid method developed in this study provides the methodical support for understanding, analyzing, and managing interruptions and workflow.
Resumo:
Utilizing advanced information technology, Intensive Care Unit (ICU) remote monitoring allows highly trained specialists to oversee a large number of patients at multiple sites on a continuous basis. In the current research, we conducted a time-motion study of registered nurses’ work in an ICU remote monitoring facility. Data were collected on seven nurses through 40 hours of observation. The results showed that nurses’ essential tasks were centered on three themes: monitoring patients, maintaining patients’ health records, and managing technology use. In monitoring patients, nurses spent 52% of the time assimilating information embedded in a clinical information system and 15% on monitoring live vitals. System-generated alerts frequently interrupted nurses in their task performance and redirected them to manage suddenly appearing events. These findings provide insight into nurses’ workflow in a new, technology-driven critical care setting and have important implications for system design, work engineering, and personnel selection and training.
Resumo:
An understanding of interruptions in healthcare is important for the design, implementation, and evaluation of health information systems and for the management of clinical workflow and medical errors. The purpose of this study is to identify and classify the types of interruptions experienced by Emergency Department(ED) nurses working in a Level One Trauma Center. This was an observational field study of Registered Nurses (RNs) employed in a Level One Trauma Center using the shadowing method. Results of the study indicate that nurses were both recipients and initiators of interruptions. Telephones, pagers, and face-to-face conversations were the most common sources of interruptions. Unlike other industries, the healthcare community has not systematically studied interruptions in clinical settings to determine and weigh the necessity of the interruption against their sometimes negative results such as medical errors, decreased efficiency, and increased costs. Our study presented here is an initial step to understand the nature, causes, and effects of interruptions, thereby improving both the quality of healthcare and patient safety. We developed an ethnographic data collection technique and a data coding method for the capturing and analysis of interruptions. The interruption data we collected are systematic, comprehensive, and close to exhaustive. They confirmed the findings from earlier studies by other researchers that interruptions are frequent events in critical care and other healthcare settings. We are currently using these data to analyze the workflow dynamics of ED clinicians, to identify the bottlenecks of information flow, and to develop interventions to improve the efficiency of emergency care through the management of interruptions.
Resumo:
OBJECTIVE: Interruptions are known to have a negative impact on activity performance. Understanding how an interruption contributes to human error is limited because there is not a standard method for analyzing and classifying interruptions. Qualitative data are typically analyzed by either a deductive or an inductive method. Both methods have limitations. In this paper, a hybrid method was developed that integrates deductive and inductive methods for the categorization of activities and interruptions recorded during an ethnographic study of physicians and registered nurses in a Level One Trauma Center. Understanding the effects of interruptions is important for designing and evaluating informatics tools in particular as well as improving healthcare quality and patient safety in general. METHOD: The hybrid method was developed using a deductive a priori classification framework with the provision of adding new categories discovered inductively in the data. The inductive process utilized line-by-line coding and constant comparison as stated in Grounded Theory. RESULTS: The categories of activities and interruptions were organized into a three-tiered hierarchy of activity. Validity and reliability of the categories were tested by categorizing a medical error case external to the study. No new categories of interruptions were identified during analysis of the medical error case. CONCLUSIONS: Findings from this study provide evidence that the hybrid model of categorization is more complete than either a deductive or an inductive method alone. The hybrid method developed in this study provides the methodical support for understanding, analyzing, and managing interruptions and workflow.
Resumo:
An understanding of interruptions in healthcare is important for the design, implementation, and evaluation of health information systems and for the management of clinical workflow and medical errors. The purpose of this study is to identify and classify the types of interruptions experienced by ED nurses working in a Level One Trauma Center. This was an observational field study of Registered Nurses employed in a Level One Trauma Center using the shadowing method. Results of the study indicate that nurses were both recipients and initiators of interruptions. Telephone, pagers, and face-to-face conversations were the most common sources of interruptions. Unlike other industries, the outcomes caused by interruptions resulting in medical errors, decreased efficiency and increased cost have not been systematically studied in healthcare. Our study presented here is an initial step to understand the nature, causes, and effects of interruptions, and to develop interventions to manage interruptions to improve healthcare quality and patient safety. We developed an ethnographic data collection technique and a data coding method for the capturing and analysis of interruptions. The interruption data we collected are systematic, comprehensive, and close to exhaustive. They confirmed the findings from early studies by other researchers that interruptions are frequent events in critical care and other healthcare settings. We are currently using these data to analyze the workflow dynamics of ED clinicians, identify the bottlenecks of information flow, and develop interventions to improve the efficiency of emergency care through the management of interruptions.
Resumo:
People often use tools to search for information. In order to improve the quality of an information search, it is important to understand how internal information, which is stored in user’s mind, and external information, represented by the interface of tools interact with each other. How information is distributed between internal and external representations significantly affects information search performance. However, few studies have examined the relationship between types of interface and types of search task in the context of information search. For a distributed information search task, how data are distributed, represented, and formatted significantly affects the user search performance in terms of response time and accuracy. Guided by UFuRT (User, Function, Representation, Task), a human-centered process, I propose a search model, task taxonomy. The model defines its relationship with other existing information models. The taxonomy clarifies the legitimate operations for each type of search task of relation data. Based on the model and taxonomy, I have also developed prototypes of interface for the search tasks of relational data. These prototypes were used for experiments. The experiments described in this study are of a within-subject design with a sample of 24 participants recruited from the graduate schools located in the Texas Medical Center. Participants performed one-dimensional nominal search tasks over nominal, ordinal, and ratio displays, and searched one-dimensional nominal, ordinal, interval, and ratio tasks over table and graph displays. Participants also performed the same task and display combination for twodimensional searches. Distributed cognition theory has been adopted as a theoretical framework for analyzing and predicting the search performance of relational data. It has been shown that the representation dimensions and data scales, as well as the search task types, are main factors in determining search efficiency and effectiveness. In particular, the more external representations used, the better search task performance, and the results suggest the ideal search performance occurs when the question type and corresponding data scale representation match. The implications of the study lie in contributing to the effective design of search interface for relational data, especially laboratory results, which are often used in healthcare activities.
Resumo:
Three rhesus monkeys (Macaca mulatta) and four pigeons (Columba livia) were trained in a visual serial probe recognition (SPR) task. A list of visual stimuli (slides) was presented sequentially to the subjects. Following the list and after a delay interval, a probe stimulus was presented that could be either from the list (Same) or not from the list (Different). The monkeys readily acquired a variable list length SPR task, while pigeons showed acquisition only under constant list length condition. However, monkeys memorized the responses to the probes (absolute strategy) when overtrained with the same lists and probes, while pigeons compared the probe to the list in memory (relational strategy). Performance of the pigeon on 4-items constant list length was disrupted when blocks of trials of different list lengths were imbedded between the 4-items blocks. Serial position curves for recognition at variable probe delays showed better relative performance on the last items of the list at short delays (0-0.5 seconds) and better relative performance on the initial items of the list at long delays (6-10 seconds for the pigeons and 20-30 seconds for the monkeys and a human adolescent). The serial position curves also showed reliable primacy and recency effects at intermediate probe delays. The monkeys showed evidence of using a relational strategy in the variable probe delay task. The results are the first demonstration of relational serial probe recognition performance in an avian and suggest similar underlying dynamic recognition memory mechanisms in primates and avians. ^
Resumo:
This study evaluated the administration-time-dependent effects of a stimulant (Dexedrine 5-mg), a sleep-inducer (Halcion 0.25-mg) and placebo (control) on human performance. The investigation was conducted on 12 diurnally active (0700-2300) male adults (23-38 yrs) using a double-blind, randomized sixway-crossover three-treatment, two-timepoint (0830 vs 2030) design. Performance tests were conducted hourly during sleepless 13-hour studies using a computer generated, controlled and scored multi-task cognitive performance assessment battery (PAB) developed at the Walter Reed Army Institute of Research. Specific tests were Simple and Choice Reaction Time, Serial Addition/Subtraction, Spatial Orientation, Logical Reasoning, Time Estimation, Response Timing and the Stanford Sleepiness Scale. The major index of performance was "Throughput", a combined measure of speed and accuracy.^ For the Placebo condition, Single and Group Cosinor Analysis documented circadian rhythms in cognitive performance for the majority of tests, both for individuals and for the group. Performance was best around 1830-2030 and most variable around 0530-0700 when sleepiness was greatest (0300).^ Morning Dexedrine dosing marginally enhanced performance an average of 3% with reference to the corresponding in time control level. Dexedrine AM also increased alertness by 10% over the AM control. Dexedrine PM failed to improve performance with reference to the corresponding PM control baseline. With regard to AM and PM Dexedrine administrations, AM performance was 6% better with subjects 25% more alert.^ Morning Halcion administration caused a 7% performance decrement and 16% increase in sleepiness and a 13% decrement and 10% increase in sleepiness when administered in the evening compared to corresponding in time control data. Performance was 9% worse and sleepiness 24% greater after evening versus morning Halcion administration.^ These results suggest that for evening Halcion dosing, the overnight sleep deprivation occurring in coincidence with the nadir in performance due to circadian rhythmicity together with the CNS depressant effects combine to produce performance degradation. For Dexedrine, morning administration resulted in only marginal performance enhancement; Dexedrine in the evening was less effective, suggesting the 5-mg dose level may be too low to counteract the partial sleep deprivation and nocturnal nadir in performance. ^