27 resultados para muscle cell

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the clinical success of left ventricular assist devices (LVADs) used for short term "bridge to transplant" and the limited availability of donor organs, heart assist devices are being considered for long term implantation as an alternative to heart transplantation. In an effort to improve biocompatibility, a nonthrombogenic cellular lining was developed from genetically engineered smooth muscle cells (GE-SMC) for the Thermocardiosystems Heartmate$\sp{\rm TM}$ LVAD. SMCs have been transduced with the genes for endothelial nitric oxide synthase (NOS III) and GTP cyclohydrolase (GTPCH) with subsequent stable expression of the NOS III protein via an Epstein Barr based DNA expression vector. Transduced SMCs produce nitric oxide at concentrations that reduce platelet deposition and smooth muscle cell proliferation when tested in vitro. In addition, the adhesive capabilities of GE-SMC linings were also examined, and optimized in physical environments mimicking typical in vivo LVAD operation. Preliminary investigations examining cell adhesion during constant shear stress exposure demonstrated an acute phase of cell loss corresponding to cytoskeletal F-actin rearrangement. Subsequently, an in vitro circulatory loop was designed to expose cell lined LVADs to in vivo operating conditions. Cumulative cell loss from cell lined LVADs was less than 10% after 24 hours of flow. Using a protocol for "preconditioning" the cell lining within the mock circulatory loop, the first implantation of an LVAD containing a genetically engineered SMC lining was successfully implemented in a bovine model. Results from this 24 hour study indicate that the flow-conditioned cellular lining remained intact with no evidence of thromboembolization and only minimal changes in coagulation studies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thoracic Aortic Aneurysms and Dissections (TAAD) are the fifteenth leading cause of death in the United States. About 15% of TAAD patients have family history of the disease. The most commonly mutated gene in these families is ACTA2, encoding smooth muscle-specific α-actin. ACTA2 missense mutations predispose individuals both to TAAD and to vascular occlusive disease of small, muscular arteries. Mice carrying an Acta2 R258C mutant transgene with a wildtype Acta2 promoter were generated and bred with Acta2-/- mice to decrease the wildtype: mutant Acta2 ratio. Acta2+/+ R258C TGmice have decreased aortic contractility without aortic disease. Acta2+/- R258C TG mice, however, have significant aortic dilatations by 12 weeks of age and a hyperproliferative response to injury. We characterized smooth muscle cells (SMCs) from bothmouse models under the hypothesis that mutant α-actin has a dominant negative effect, leading to impaired contractile filament formation/stability, improper focal adhesion maturation and increased proliferation. Explanted aortic SMCs from Acta2+/+ R258C TG mice are differentiated - they form intact filaments, express higher levels of contractile markers compared to wildtype SMCs and have predominantly nuclear Myocardin-Related Transcription Factor A (MRTF-A) localization. However, ultracentrifugation assays showed large unpolymerized actin fractions, suggesting that the filaments are brittle. In contrast, Acta2+/- R258C TG SMCs are less well-differentiated, with pools of unpolymerized actin, more cytoplasmic MRTF-A and decreased contractile protein expression compared to wildtype cells. Ultracentrifugation assays after treating Acta2+/- R258C TGSMCs with phalloidin showed actin filament fractions, indicating that mutant α-actin can polymerize into filaments. Both Acta2+/+ R258C TGand Acta2+/- R258C TGSMCs have larger and more peripheral focal adhesions compared to wildtype SMCs. Rac1 was more activated in Acta2+/+ R258C TGSMCs; both Rac1 and RhoA were less activated in Acta2+/- R258C TG SMCs, and FAK was more activated in both transgenic SMC lines compared to wildtype. Proliferation in both cell lines was significantly increased compared to wildtype cells and could be partially attenuated by inhibition of FAK or PDGFRβ. These data support a dominant negative effect of the Acta2 R258C mutation on the SMC phenotype, with increasing phenotypic severity when wildtype: mutant α-actin levels are decreased.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Missense mutations in smooth muscle cell (SMC) specific ACTA2 (á-actin) and MYH11 (â-myosin heavy chain) cause diffuse and diverse vascular diseases, including thoracic aortic aneurysms and dissections (TAAD) and early onset coronary artery disease and stroke. The mechanism by which these mutations lead to dilatation of some arteries but occlusion of others is unknown. We hypothesized that the mutations act through two distinct mechanisms to cause varied vascular diseases: a loss of function, leading to decreased SMC contraction and aneurysms, and a gain of function, leading to increased SMC proliferation and occlusive disease. To test this hypothesis, ACTA2 mutant SMCs and myofibroblasts were assessed and found to not form á-actin filaments whereas control cells did, suggesting a dominant negative effect of ACTA2 mutations on filament formation. A loss of á-actin filaments would be predicted to cause decreased SMC contractility. Histological examination of vascular tissues from patients revealed SMC hyperplasia leading to arterial stenosis and occlusion, supporting a gain of function associated with the mutant gene. Furthermore, ACTA2 mutant SMCs and myofibroblasts proliferated more rapidly in static culture than control cells (p<0.05). We also determined that Acta2-/- mice have ascending aortic aneurysms. Histological examination revealed aortic medial SMC hyperplasia, but minimal features of medial degeneration. Acta2-/- SMCs proliferated more rapidly in culture than wildtype (p<0.05), and microarray analysis of Acta2-/- SMCs revealed increased expression of Actg2, 15 collagen genes, and multiple focal adhesion genes. Acta2-/- SMCs showed altered localization of vinculin and zyxin and increased phosphorylated focal adhesion kinase (FAK) in focal adhesions. A specific FAK inhibitor decreased Acta2-/- SMC proliferation to levels equal to wildtype SMCs (p<0.05), suggesting that FAK activation leads to the increased proliferation. We have described a unique pathology associated with ACTA2 and MYH11 mutations, as well as an aneurysm phenotype in Acta2-/- mice. Additionally, we identified a novel pathogenic pathway for vascular occlusive disease due to loss of SMC contractile filaments, alterations in focal adhesions, and activation of FAK signaling in SMCs with ACTA2 mutations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Skeletal muscle differentiation involves sequential events in which proliferating undifferentiated myoblasts withdraw from the cell cycle and fuse to form multinucleated myotubes. The process of fusion is accompanied by the disappearance of proteins associated with cell proliferation and the coordinate induction of a battery of muscle-specific gene products, which includes the muscle isoenzyme of creatine kinase, nicotinic acetylcholine receptor, and contractile proteins such as alpha-actin. The molecular events associated with myogenesis are particularly amenable to experimental analysis because the events which occur in vivo can be recapitulated in vitro using established muscle cell lines. Initiation of myogenic differentiation in vitro can be achieved by removing serum from the culture medium. Myogenesis, therefore, can be considered to be regulated through a repression-type of mechanism by components in serum. The objectives of this project were to identify the components involved in regulation of myogenesis and approach the mechanism(s) whereby these components achieve their regulatory function. Initially, the effects of a series of polypeptide growth factors on myogenesis were examined. Among them TGF$\beta$ and FGF were found to be potent inhibitors of myogenic differentiation which did not affect cell proliferation. The inhibitory effects of these growth factors on differentiation requires their persistent presence in the culture medium. After myoblasts have undergone fusion, they become refractory to the inhibitory effects of TGF$\beta$, FGF, and serum. When fusion is inhibited by the presence of EGTA, a Ca$\sp{2+}$ chelator, muscle-specific genes are expressed reversibly upon removal of inhibitory growth factors. Subsequent exposure of biochemically differentiated cells to serum or TGF$\beta$ leads to down-regulation of muscle-specific genes. Stimulation with serum also leads to reentry of myocytes into the cell cycle, whereas fused myotubes are irreversibly and terminally differentiated. Measurement of levels of TGF$\beta$ receptors reveals that under non-fusing conditions, TGF$\beta$ receptor levels in biochemically differentiated myocytes remained as high as in undifferentiated myoblasts, while during terminal differentiation, TGF$\beta$ receptors decreased at least five-fold. Thus, down-regulation of TGF$\beta$ receptors is coupled to irreversible differentiation, but not reversible differentiation in the absence of fusion. The possible involvement of second messenger systems, such as cAMP and protein kinase C, in the pathway(s) by which TGF$\beta$, FGF, or serum factors transduce their signals from the cell surface to the nucleus was also examined. The results showed that myogenic differentiation is subject to negative regulation through cAMP elevation-dependent and cAMP elevation-independent pathways and that serum mitogens, TGF$\beta$ and FGF inhibit differentiation through a mechanism independent of cAMP-elevation or protein kinase C activation. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently, a family of muscle-specific regulatory factors that includes myogenin, myoD, myf-5, and MRF-4 has been identified. They share a high degree of homology within a region that contains a basic and helix-loop-helix domain. Transfection of many non-muscle cell types with any one of these genes results in the activation of the entire myogenic program. To explore the mechanism through which myogenin regulates myogenesis, we have prepared antibodies against peptides specific to myogenin. Using these antibodies we show that myogenin is a 32 Kd phospho-protein which is localized to the nuclei of muscle cells. In vitro, myogenin oligomerizes with the ubiquitous enhancer binding factor E12, and acquires high affinity for an element of the core of the muscle creatine kinase (MCK) enhancer that is conserved among many muscle-specific genes. Myogenin synthesized in BC$\sb3$H1 and C2 muscle cell lines also binds to the same site in the enhancer. However, the MCK enhancer is not activated in 10T1/2 fibroblasts which have been transfected with a constitutive myogenin expression vector until growth factors have been removed from the media. This result indicates that mitogenic signals block the actions of myogenin.. Mutagenesis of the myogenin/E12 binding site in the MCK enhancer abolishes binding of the hetero-oligomer and prevents trans-activation of the enhancer by myogenin. By site directed mutagenesis of myogenin we have shown that the basic region consists of three clusters of basic residues, two of which are required for binding and activation of the myogenic program. Myogenic activation, but not DNA binding, is lost when the 10 residue region between the two required basic clusters is substituted with the corresponding region from E12, which also contains a similar basic and helix-loop-helix domain. Functional revertants of this substitution mutant have identified two amino acids which confer muscle specificity. The properties of myogenin suggest that it functions as a sequence-specific DNA binding factor that interacts directly with muscle-specific genes during myogenesis and contains within its basic domain a region which imparts myogenic activation and is separable from DNA binding. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in smooth muscle cell (SMC)-specific isoforms of α-actin and β-myosin heavy chain, two major components of the SMC contractile unit, cause familial thoracic aortic aneurysms leading to acute aortic dissections (FTAAD). To investigate whether mutations in the kinase that controls SMC contractile function (myosin light chain kinase [MYLK]) cause FTAAD, we sequenced MYLK by using DNA from 193 affected probands from unrelated FTAAD families. One nonsense and four missense variants were identified in MYLK and were not present in matched controls. Two variants, p.R1480X (c.4438C>T) and p.S1759P (c.5275T>C), segregated with aortic dissections in two families with a maximum LOD score of 2.1, providing evidence of linkage of these rare variants to the disease (p = 0.0009). Both families demonstrated a similar phenotype characterized by presentation with an acute aortic dissection with little to no enlargement of the aorta. The p.R1480X mutation leads to a truncated protein lacking the kinase and calmodulin binding domains, and p.S1759P alters amino acids in the α-helix of the calmodulin binding sequence, which disrupts kinase binding to calmodulin and reduces kinase activity in vitro. Furthermore, mice with SMC-specific knockdown of Mylk demonstrate altered gene expression and pathology consistent with medial degeneration of the aorta. Thus, genetic and functional studies support the conclusion that heterozygous loss-of-function mutations in MYLK are associated with aortic dissections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a genetic disorder with pleiotropic manifestations caused by heterozygous mutations in either TSC1 or TSC2. One of the less investigated complications of TSC is the formation of aneurysms of the descending aorta, which are characterized on pathologic examination by smooth muscle cell (SMC) proliferation in the aortic media. SMCs were explanted from Tsc2(+/-) mice to investigate the pathogenesis of aortic aneurysms caused by TSC2 mutations. Tsc2(+/-) SMCs demonstrated increased phosphorylation of mammalian target of rapamycin (mTOR), S6 and p70S6K and increased proliferation rates compared with wild-type (WT) SMCs. Tsc2(+/-) SMCs also had reduced expression of SMC contractile proteins compared with WT SMCs. An inhibitor of mTOR signaling, rapamycin, decreased SMC proliferation and increased contractile protein expression in the Tsc2(+/-) SMCs to levels similar to WT SMCs. Exposure to alpha-elastin fragments also decreased proliferation of Tsc2(+/-) SMCs and increased levels of p27(kip1), but failed to increase expression of contractile proteins. In response to artery injury using a carotid artery ligation model, Tsc2(+/-) mice significantly increased neointima formation compared with the control mice, and the neointima formation was inhibited by treatment with rapamycin. These results demonstrate that Tsc2 haploinsufficiency in SMCs increases proliferation and decreases contractile protein expression and suggest that the increased proliferative potential of the mutant cells may be suppressed in vivo by interaction with elastin. These findings provide insights into the molecular pathogenesis of aortic disease in TSC patients and identify a potential therapeutic target for treatment of this complication of the disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

I have cloned cDNAs corresponding to two distinct genes, Xlmf1 and Xlmf25, which encode skeletal muscle-specific, transcriptional regulatory proteins. These proteins are members of the helix-loop-helix family of DNA binding factors, and are most homologous to MyoD1. These two genes have disparate temporal expression patterns during early embryogenesis; although, both transcripts are present exclusively in skeletal muscle of the adult. Xlmf1 is first detected 7 hours after fertilization, shortly after the midblastula transition. Xlmf25 is detected in maternal stores of mRNA, during early cleavage stages of the embryo and throughout later development. Both Xlmf1 and Xlmf25 transcripts are detected prior to the expression of other, previously characterized, muscle-specific genes. The ability of Xlmf1 and Xlmf25 to convert mouse 10T1/2 fibroblasts to a myogenic phenotype demonstrates their activity as myogenic regulatory factors. Additionally, Xlmf1 and Xlmf25 can directly transactivate a reporter gene linked to the muscle-specific, muscle creatine kinase (MCK) enhancer. The functional properties of Xlmf1 and Xlmf25 proteins were further explored by investigating their interactions with the binding site in the MCK enhancer. Analysis of dissociation rates revealed that Xlmf25-E12 dimers had a two-fold lower avidity for this site than did Xlmf1-E12 dimers. Clones containing genomic sequence of Xlmf1 and Xlmf25 have been isolated. Reporter gene constructs containing a lac-z gene driven by Xlmf1 regulatory sequences were analyzed by embryo injections and transfections into cultured muscle cells. Elements within $-$200 bp of the transcription start site can promote high levels of muscle specific expression. Embryo injections show that 3500 bp of upstream sequence is sufficient to drive somite specific expression. EMSAs and DNAse I footprint analysis has shown the discrete interaction of factors with several cis-elements within 200 bp of the transcription start site. Mutation of several of these elements shows a positive requirement for two CCAAT boxes and two E boxes. It is evident from the work performed with this promoter that Xlmf1 is tightly regulated during muscle cell differentiation. This is not surprising given the fact that its gene product is crucial to the determination of cell fate choices. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The myocyte enhancer factor (MEF)-2 family of transcription factors has been implicated in the regulation of muscle transcription in vertebrates, but the precise position of these regulators within the genetic hierarchy leading to myogenesis is unclear. The MEF2 proteins bind to a conserved A/T-rich DNA sequence present in numerous muscle-specific genes, and they are expressed in the cells of the developing somites and in the embryonic heart at the onset of muscle formation in mammals. The MEF2 genes belong to the MADS box family of transcription factors, which control specific programs of gene expression in species ranging from yeast to humans. Each MEF2 family member contains two highly conserved protein motifs, the MADS domain and the MEF2-specific domain, which together provide the MEF2 factors with their unique DNA binding and dimerization properties. In an effort to further define the function of the MEF2 proteins, and to evaluate the degree of conservation shared among these factors and the phylogenetic pathways that they regulate, we sought to identify MEF2 family members in other species. In Drosophila, a homolog of the vertebrate MEF2 genes was identified and termed D-mef2. The D-MEF2 protein binds to the consensus MEF2 element and can activate transcription through tandem copies of that site. During Drosophila embryogenesis, D-MEF2 is specific to the mesoderm germ layer of the developing embryo and becomes expressed in all muscle cell types within the embryo. The role of D-mef2 in Drosophila embryogenesis was examined by generating a loss-of-function mutation in the D-mef2 gene. In embryos homozygous for this mutant allele, somatic, cardiac, and visceral muscles fail to differentiate, but precursors of these myogenic lineages are normally specified and positioned. These results demonstrate that different muscle cell types share a common myogenic differentiation program controlled by MEF2 and suggest that this program has been conserved from Drosophila to mammals. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MRF4 is one of four skeletal muscle specific regulatory genes, (the other three genes being MyoD, myf5, and myogenin), each of which has the unique ability to orchestrate an entire program of muscle-specific transcription when introduced into diverse cell types. These findings have led to the notion that these factors function as master regulators of muscle cell fate. Analysis of mice lacking MyoD, myf5, and myogenin have further defined their roles in the commitment and differentiation of myotomal progenitor cells. Current data strongly supports the model that MyoD and myf5 share functional redundancy in determining the muscle cell lineage, while myogenin acts downstream of MyoD and myf5, to initiate myoblast differentiation. Unlike other myogenic bHLH genes, MRF4 is expressed predominantly in the adult, suggesting that it may function to regulate adult muscle maturation and maintenance. To test this hypothesis and to eventually incorporate MRF4 into a general model for muscle specification, differentiation, maturation and maintenance, I deleted the MRF4 gene. MRF4-null mice are viable and fertile, however, they show mild rib anomalies. In addition, the expression of myogenin is dramatically upregulated only in the adult, suggesting that myogenin may compensate for the loss of MRF4 in the adult, and MRF4 may normally suppress the expression of myogenin after birth. MRF4 is also required during muscle regeneration after injury.^ To determine the degree of genetic redundancy between MRF4-myogenin; and MRF4-MyoD, I crossed the MRF4-null mice with MyoD- and myogenin-null mice respectively. There are no additional muscle phenotypes in double-null progeny from a MRF4 and myogenin cross, suggesting that the existence of residual fibers in myogenin-null mice is not due to the presence of MRF4. MRF4 expression also cannot account for the ability of myogenin-null myoblasts to differentiate in vitro. However, the combination of the MRF4-null mutation with the myogenin-null mutation results in a novel rib phenotype. This result suggests that MRF4 modifies the myogenin-null rib phenotype, and MRF4 and myogenin play redundant roles in rib development.^ MRF4 also shares dosage effects with MyoD during mouse development. (MyoD+/$-$;MRF4$-$/$-$)mice are fertile and viable, while (MyoD$-$/$-$;MRF4+/$-$) mice die between birth and two weeks after birth, and have a small skeletal structure. The double homozygous mice for MRF4 and MyoD mutations are embryonic lethal and die at around E10.5. These results suggest that MRF4 and MyoD share overlapping functions during mouse embryogenesis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coronary heart disease (CHD) is the leading cause of death in the United States. Recently, renin-angiotensin system (RAS) was found associated with atherosclerosis formation, with angiotensin II inducing vascular smooth muscle cell growth and migration, platelet activation and aggregation, and stimulation of plasminogen activator inhibitor-1. Angiotensin II is converted from angiotensin I by angiotensin I-converting enzyme (ACE) and this enzyme is mainly genetically determined. The ACE gene has been assigned to chromosome 17q23 and an insertion/deletion (I/D)polymorphism has been characterized by the presence/absence of a 287 bp fragment in intron 16 of the gene. The two alleles form three genotypes, namely, DD, ID and II and the DD genotype has been linked to higher plasma ACE levels and cell ACE activity.^ In this study, the association between the ACE I/D polymorphism and carotid artery wall thickness measured by B-mode ultrasound was investigated in a biracial sample, and the association between the gene and incident CHD was investigated in whites and if the gene-CHD association in whites, if any, was due to the gene effect on atherosclerosis. The study participants are from the prospective Atherosclerosis Risk in Communities (ARIC) Study, including adults aged 45 to 65 years. The present dissertation used a matched case-control design for studying the associations of the ACE gene with carotid artery atherosclerosis and an unmatched case-control design for the association of the gene with CHD. A significant recessive effect of the D allele on carotid artery thickness was found in blacks (OR = 3.06, 95% C.I: 1.11-8.47, DD vs. ID and II) adjusting for age, gender, cigarette smoking, LDL-cholesterol and diabetes. No similar associations were found in whites. The ACE I/D polymorphism is significantly associated with coronary heart disease in whites, and while stratifying data by carotid artery wall thickness, the significant associations were only observed in thin-walled subgroups. Assuming a recessive effect of the D allele, odds ratio was 2.84 (95% C.I:1.17-6.90, DD vs. ID and II) and it was 2.30 (95% C.I:1.22-4.35, DD vs. ID vs. II) assuming a codominant effect of the D allele. No significant associations were observed while comparing thick-walled CHD cases with thin-walled controls. Following conclusions could be drawn: (1) The ACE I/D polymorphism is unlikely to confer appreciable increase in the risk of carotid atherosclerosis in US whites, but may increases the risk of carotid atherosclerosis in blacks. (2) ACE I/D polymorphism is a genetic risk factor for incident CHD in US whites and this effect is separate from the chronic process of atherosclerosis development. Finally, the associations observed here are not causal, since the I/D polymorphism is in an intron, where no ACE proteins are encoded. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aortic aneurysms and dissections are the 15th most common cause of death in the United States. Genetic factors contribute to the pathogenesis of thoracic aortic aneurysms and dissections (TAAD). Currently, six loci and four genes have been identified for familial TAAD. Notably, mutations in smooth muscle cell (SMC) contractile genes, ACTA2 and MYH11, are responsible for 15% of familial TAAD, suggesting that proper SMC contraction is important for normal aorta function. Therefore, we hypothesize that mutations in other genes encoding SMC contractile proteins also cause familial TAAD. ^ To test this hypothesis, we used a candidate gene approach to identify causative mutations in SMC contractile genes for familial TAAD. Sequencing DNA in 80 TAAD patients from unrelated families, we identified putative mutations in eight contractile genes. We chose myosin light chain kinase (MLCK ) S1759P for further study for the following reasons: (1) Serine 1759 is conserved between vertebrates and invertebrates. (2) S1759P is predicted to be functionally deleterious by bioinformatics. (3) Low blood pressure is observed in SMC-selective MLCK-deficient mice. ^ In the presence of Ca2+/Calmodulin (CaM), MLCK containing CaM binding and kinase domains are activated to phosphorylate myosin light chain, thereby initiate SMC contraction. The CaM binding sequence of MLCK forms an α-helix structure required for CaM binding. MLCK Serine 1759 is located within the CaM binding domain. S1759P is predicted to decrease the α-helix composition in the CaM binding domain. Hence, we hypothesize that MLCK mutations cause TAAD through disturbing CaM binding and MLCK activity. ^ We further sequenced MLCK in DNA samples from additional 86 probands with familial TAAD. Two more mutations, MLCK A1754T and R1480Stop, were identified, supporting that MLCK mutations cause familial TAAD. ^ To define whether MLCK mutations disrupted CaM binding and MLCK activity, we performed co-immunoprecipitation and kinase assays. Decreased CaM binding and kinase activity was detected in A1754T and S1759P. Moreover, R1480Stop is predicted to truncate kinase and CaM binding domains. We conclude that MLCK mutations disrupt CaM binding and MLCK activity. ^ Collectively, our study is first to show mutations in genes regulating SMC contraction cause TAAD. This finding further highlights the importance of SMC contraction in maintaining aorta function. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thoracic aortic aneurysms and dissections (TAAD) are the primary disease affecting the thoracic ascending aorta, with an incidence rate of 10.4/100,000. Although about 20% of patients carry a mutation in a single gene that causes their disease, the remaining 80% of patients may also have genetic factors that increase their risk for developing TAAD. Many of the genes that predispose to TAAD encode proteins involved in smooth muscle cell (SMC) contraction and the disease-causing mutations are predicted to disrupt contractile function. SMCs are the predominant cell type in the ascending aortic wall. Mutations in MYH11, encoding the smooth muscle specific myosin heavy chain, are a rare cause of inherited TAAD. However, rare but recurrent non-synonymous variants in MYH11 are present in the general population but do not cause inherited TAAD. The goal of this study was to assess the potential role of these rare variants in vascular diseases. Two distinct variants were selected: the most commonly seen rare variant, MYH11 R247C, and a duplication of the chromosomal region spanning the MYH11 locus at 16p13.1. Genetic analyses indicated that both of these variants were significantly enriched in patients with TAAD compared with controls. A knock-in mouse model of the Myh11 R247C rare variant was generated, and these mice survive and reproduce normally. They have no structural abnormalities of the aorta or signs of aortic disease, but do have decreased aortic contractility. Myh11R247C/R247C mice also have increased proliferative response to vascular injury in vivo and increased proliferation of SMCs in vitro. Myh11R247C/R247C SMCs have decreased contractile gene and protein expression and are dedifferentiated. In fibroblasts, myosin force generation is required for maturation of focal adhesions, and enhancers of RhoA activity replace enhancers of Rac1 activity as maturation occurs. Consistent with these previous findings, focal adhesions are smaller in Myh11R247C/R247C SMCs, and there is decreased RhoA activation. A RhoA activator (CN03) rescues the dedifferentiated phenotype of Myh11R247C/R247C SMCs. Myh11R247C/R247C mice were bred with an existing murine model of aneurysm formation, the Acta2-/- mouse. Over time, mice carrying the R247C allele in conjunction with heterozygous or homozygous loss of Acta2 had significantly increased aortic diameter, and a more rapid accumulation of pathologic markers. These results suggest that the Myh11 R247C rare variant acts as a modifier gene increasing the risk for and severity of TAAD in mice. In patients with 16p13.1 duplications, aortic MYH11 expression is increased, but there is no corresponding increase in smooth muscle myosin heavy chain protein. Using SMCs that overexpress Myh11, we identified alterations in SMC phenotype leading to excessive protein turnover. All contractile proteins, not just myosin, are affected, and the proteins are turned over by autophagic degradation. Surprisingly, these cells are also more contractile compared with wild-type SMCs. The results described in this dissertation firmly establish that rare variants in MYH11 significantly affect the phenotype of SMCs. Further, the data suggests that these rare variants do increase the risk of TAAD via pathways involving altered SMC phenotype and contraction. Therefore, this study validates that these rare genetic variants alter vascular SMCs and provides model systems to explore the contribution of rare variants to disease.