8 resultados para mobile genetic elements

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies. RESULTS: The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections. CONCLUSION: E. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RF's effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Mendelian inheritance of genetic mutations can lead to adult-onset cardiovascular disease. Several genetic loci have been mapped for the familial form of Thoracic Aortic Aneurysms (TAA), and many causal mutations have been identified for this disease. Intracranial Aneurysms (ICA) also show linkage heterogeneity, but no mutations have been identified causing familial ICA alone. Here, we characterized a large family (TAA288) with an autosomal dominant pattern of inherited aneurysms. It is intriguing that female patients predominantly present with ICA and male patients predominantly with TAA in this family. To identify a causal mutation in this family, a genome-wide linkage analysis was previously performed on nine members of this family using the 50k GenChips Hind array from Affymetrix. This analysis eventually identified a single disease-segregating locus, on chromosome 5p15. We build upon this previous analysis in this study, hypothesizing that a genetic mutation inherited in this locus leads to the sex-specific phenotype of TAA and ICA in this family First we refined the boundaries of the 5p15 disease linked locus down to the genomic coordinates 5p15: 3,424,465- 6,312,925 (GRCh37/hg19 Assembly). This locus was named the TAA288 critical interval. Next, we sequenced candidate genes within the TAA288 critical interval. The selection of genes was simplified by the relatively small number of well-characterized genetic elements within the region. Seeking novel or rare disease-segregating variants, we initially observed a single point alteration in the metalloproteinase gene ADAMTS16 fulfilling this criteria. This variant was later classified as a low-frequency population polymorphism (rs72647757), but we continued to explore the potential role of the ADAMTS16 as the cause of disease in TAA288. We observed that fibroblasts cultured from TAA288 patients consistently upregulated the expression of this gene more strongly compared to matched control fibroblasts when treated with the cytokine TGF-β1, though there was some variation in the exact nature of this expression. We also observed evidence that this protein is expressed at elevated levels in aortic aneurysm tissue from patients with mutations in the gene TGFBR2 and Marfan syndrome, shown by immunohistochemical detection of this protein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Yeast prions are a group of non-Mendelian genetic elements transmitted as altered and self-propagating conformations. Extensive studies in the last decade have provided valuable information on the mechanisms responsible for yeast prion propagation. How yeast prions are formed de novo and what cellular factors are required for determining prion "strains" or variants--a single polypeptide capable of existing in multiple conformations to result in distinct heritable phenotypes--continue to defy our understanding. We report here that Sse1, the yeast ortholog of the mammalian heat-shock protein 110 (Hsp110) and a nucleotide exchange factor for Hsp70 proteins, plays an important role in regulating [PSI+] de novo formation and variant determination. Overproduction of the Sse1 chaperone dramatically enhanced [PSI+] formation whereas deletion of SSE1 severely inhibited it. Only an unstable weak [PSI+] variant was formed in SSE1 disrupted cells whereas [PSI+] variants ranging from very strong to very weak were formed in isogenic wild-type cells under identical conditions. Thus, Sse1 is essential for the generation of multiple [PSI+] variants. Mutational analysis further demonstrated that the physical association of Sse1 with Hsp70 but not the ATP hydrolysis activity of Sse1 is required for the formation of multiple [PSI+] variants. Our findings establish a novel role for Sse1 in [PSI+] de novo formation and variant determination, implying that the mammalian Hsp110 may likewise be involved in the etiology of protein-folding diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The poly-D-glutamic acid capsule of Bacillus anthracis is considered essential for lethal anthrax disease. Yet investigations of capsule function have been limited primarily to attenuated B. anthracis strains lacking certain genetic elements. In work presented in this thesis, I constructed and characterized a genetically complete (pXO1 + pXO2+) B. anthracis strain (UT500) and isogenic mutants deleted for two previously identified capsule gene regulators, atxA and acpA, and a newly-identified regulator, acpB. Results of transcriptional analysis and microscopy revealed that atxA controls expression of the first gene of the capsule biosynthesis operon, capB, via positive transcriptional regulation of acpA and acpB. acpA and acpB appear to be partial functional homologs. Deletion of either gene alone has little effect on capsule synthesis. However, a mutant deleted for both acpA and acpB is noncapsulated. Thus, in contrast to previously published models, my results suggest that atxA is the master regulator of cap gene expression in a genetically complete strain. A detailed transcriptional analysis of capB and the regulatory genes was performed to establish the effects of the regulators and CO2/bicarbonate on specific mRNAs of target genes. CO2/bicarbonate is a well-established signal for B. anthracis capsule synthesis in culture. Taqman RT-PCR results indicated that growth in the presence of elevated CO2 greatly increased expression of acpA, acpB and capB but not atxA. 5′ end mapping of capB and acpA revealed atxA-regulated and atxA-independent transcriptional start sites for both genes. All atxA-regulated start sites were also CO2-regulated. A single atxA-independent start site was identified 5 ′ of acpB. However, RT-PCR analysis indicated that capD and acpB are co-transcribed. Thus, it is likely that atxA-mediated control of acpB expression occurs via transcriptional activation of the atxA-regulated start sites of capB. Finally, I examined the contribution of the B. anthracis capsule to virulence. The virulence of the parent strain, mutants deleted for the capsule biosynthesis genes ( capBCAD), and mutants missing the capsule regulator genes was compared using a mouse model for inhalation anthrax. The data indicate that in this model, capsule is essential for virulence. Mice survived infection with the noncapsulated capBCAD and acpA acpB mutants. These mutants initiated germination in the lung, but did not disseminate to the spleen. The acpA mutant had an LD50 value similar to the parent strain and was able to disseminate and cause lethal infection. Unexpectedly, the acpB mutant had a higher LD 50 and a reduced ability to disseminate. During in vitro culture, the acpB single mutant produces capsule and toxin similar to the parent strain. It is likely that acpB regulates the expression of downstream genes that contribute to the virulence of B. anthracis. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation of cartilage and bone involves sequential processes in which undifferentiated mesenchyme aggregates into primordial condensations which subsequently grow and differentiate, resulting in morphogenesis of the adult skeleton. While much has been learned about the structural molecules which comprise cartilage and bone, little is known about the nuclear factors which regulate chondrogenesis and osteogenesis. MHox is a homeobox-containing gene which is expressed in the mesenchyme of facial, limb, and vertebral skeletal precursors during mouse embryogenesis. MHox expression has been shown to require epithelial-derived signals, suggesting that MHox may regulate the epithelial-mesenchymal interactions required for skeletal organogenesis. To determine the functions of MHox, we generated a loss-of-function mutation in the MHox gene. Mice homozygous for a mutant MHox allele exhibit defects of skeletogenesis, involving the loss or malformation of craniofacial, limb and vertebral skeletal structures. The affected skeletal elements are derived from the cranial neural crest, as well as somitic and lateral mesoderm. Analysis of the mutant phenotype during ontogeny demonstrated a defect in the formation or growth of chondrogenic and osteogenic precursors. These findings provide evidence that MHox regulates the formation of preskeletal condensations from undifferentiated mesenchyme. In addition, generation of mice doubly mutant for the MHox and S8 homeobox genes reveal that these two genes interact to control formation of the limb and craniofacial skeleton. Mice carrying mutant alleles for S8 and MHox exhibit an exaggeration of the craniofacial and limb phenotypes observed in the MHox mutant mouse. Thus, MHox and S8 are components of a combinatorial genetic code controlling generation of the skeleton of the skull and limbs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two molecular epidemiological studies were conducted to examine associations between genetic variation and risk of squamous cell carcinoma of the head and neck (SCCHN). In the first study, we hypothesized that genetic variation in p53 response elements (REs) may play roles in the etiology of SCCHN. We selected and genotyped five polymorphic p53 REs as well as a most frequently studied p53 codon 72 (Arg72Pro, rs1042522) polymorphism in 1,100 non-Hispanic White SCCHN patients and 1,122 age-and sex-matched cancer-free controls recruited at The University of Texas M. D. Anderson Cancer Center. In multivariate logistic regression analysis with adjustment for age, sex, smoking and drinking status, marital status and education level, we observed that the EOMES rs3806624 CC genotype had a significant effect of protection against SCCHN risk (adjusted odds ratio= 0.79, 95% confidence interval =0.64–0.98), compared with the -838TT+CT genotypes. Moreover, a significantly increased risk associated with the combined genotypes of p53 codon 72CC and EOMES -838TT+CT was observed, especially in the subgroup of non-oropharyneal cancer patients. The values of false-positive report probability were also calculated for significant findings. In the second study, we assessed the association between SCCHN risk and four potential regulatory single nucleotide polymorphisms (SNPs) of DEC1 (deleted in esophageal cancer 1) gene, a candidate tumor suppressor gene for esophageal cancer. After adjustment for age, sex, and smoking and drinking status, the variant -606CC (i.e., -249CC) homozygotes had a significantly reduced SCCHN risk (adjusted odds ratio = 0.71, 95% confidence interval = 0.52–0.99), compared with the -606TT homozygotes. Stratification analyses showed that a reduced risk associated with the -606CC genotype was more pronounced in subgroups of non-smokers, non-drinkers, younger subjects (defined as ≤ 57 years), carriers of TP53 Arg/Arg (rs1042522) genotype, patients with oropharyngeal cancer or late-stage SCCHN. Further in silico analysis revealed that the -249 T-to-C change led to a gain of a transcription factor binding site. Additional functional analysis showed that the -249T-to-C change significantly enhanced transcriptional activity of the DEC1 promoter and the DNA-protein binding activity. We conclude that the DEC1 promoter -249 T>C (rs2012775) polymorphism is functional, modulating susceptibility to SCCHN among non-Hispanic Whites. Additional large-scale, preferably population-based studies are needed to validate our findings.^