15 resultados para logistic model

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2011, there will be an estimated 1,596,670 new cancer cases and 571,950 cancer-related deaths in the US. With the ever-increasing applications of cancer genetics in epidemiology, there is great potential to identify genetic risk factors that would help identify individuals with increased genetic susceptibility to cancer, which could be used to develop interventions or targeted therapies that could hopefully reduce cancer risk and mortality. In this dissertation, I propose to develop a new statistical method to evaluate the role of haplotypes in cancer susceptibility and development. This model will be flexible enough to handle not only haplotypes of any size, but also a variety of covariates. I will then apply this method to three cancer-related data sets (Hodgkin Disease, Glioma, and Lung Cancer). I hypothesize that there is substantial improvement in the estimation of association between haplotypes and disease, with the use of a Bayesian mathematical method to infer haplotypes that uses prior information from known genetics sources. Analysis based on haplotypes using information from publically available genetic sources generally show increased odds ratios and smaller p-values in both the Hodgkin, Glioma, and Lung data sets. For instance, the Bayesian Joint Logistic Model (BJLM) inferred haplotype TC had a substantially higher estimated effect size (OR=12.16, 95% CI = 2.47-90.1 vs. 9.24, 95% CI = 1.81-47.2) and more significant p-value (0.00044 vs. 0.008) for Hodgkin Disease compared to a traditional logistic regression approach. Also, the effect sizes of haplotypes modeled with recessive genetic effects were higher (and had more significant p-values) when analyzed with the BJLM. Full genetic models with haplotype information developed with the BJLM resulted in significantly higher discriminatory power and a significantly higher Net Reclassification Index compared to those developed with haplo.stats for lung cancer. Future analysis for this work could be to incorporate the 1000 Genomes project, which offers a larger selection of SNPs can be incorporated into the information from known genetic sources as well. Other future analysis include testing non-binary outcomes, like the levels of biomarkers that are present in lung cancer (NNK), and extending this analysis to full GWAS studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ordinal logistic regression models are used to analyze the dependant variable with multiple outcomes that can be ranked, but have been underutilized. In this study, we describe four logistic regression models for analyzing the ordinal response variable. ^ In this methodological study, the four regression models are proposed. The first model uses the multinomial logistic model. The second is adjacent-category logit model. The third is the proportional odds model and the fourth model is the continuation-ratio model. We illustrate and compare the fit of these models using data from the survey designed by the University of Texas, School of Public Health research project PCCaSO (Promoting Colon Cancer Screening in people 50 and Over), to study the patient’s confidence in the completion colorectal cancer screening (CRCS). ^ The purpose of this study is two fold: first, to provide a synthesized review of models for analyzing data with ordinal response, and second, to evaluate their usefulness in epidemiological research, with particular emphasis on model formulation, interpretation of model coefficients, and their implications. Four ordinal logistic models that are used in this study include (1) Multinomial logistic model, (2) Adjacent-category logistic model [9], (3) Continuation-ratio logistic model [10], (4) Proportional logistic model [11]. We recommend that the analyst performs (1) goodness-of-fit tests, (2) sensitivity analysis by fitting and comparing different models.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The history of the logistic function since its introduction in 1838 is reviewed, and the logistic model for a polychotomous response variable is presented with a discussion of the assumptions involved in its derivation and use. Following this, the maximum likelihood estimators for the model parameters are derived along with a Newton-Raphson iterative procedure for evaluation. A rigorous mathematical derivation of the limiting distribution of the maximum likelihood estimators is then presented using a characteristic function approach. An appendix with theorems on the asymptotic normality of sample sums when the observations are not identically distributed, with proofs, supports the presentation on asymptotic properties of the maximum likelihood estimators. Finally, two applications of the model are presented using data from the Hypertension Detection and Follow-up Program, a prospective, population-based, randomized trial of treatment for hypertension. The first application compares the risk of five-year mortality from cardiovascular causes with that from noncardiovascular causes; the second application compares risk factors for fatal or nonfatal coronary heart disease with those for fatal or nonfatal stroke. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this study was to develop and validate a computer-based statistical algorithm based on a multivariable logistic model that can be translated into a simple scoring system in order to ascertain stroke cases using hospital admission medical records data. This algorithm, the Risk Index Score (RISc), was developed using data collected prospectively by the Brain Attack Surveillance in Corpus Christ (BASIC) project. The validity of the RISc was evaluated by estimating the concordance of scoring system stroke ascertainment to stroke ascertainment accomplished by physician review of hospital admission records. The goal of this study was to develop a rapid, simple, efficient, and accurate method to ascertain the incidence of stroke from routine hospital admission hospital admission records for epidemiologic investigations. ^ The main objectives of this study were to develop and validate a computer-based statistical algorithm based on a multivariable logistic model that could be translated into a simple scoring system to ascertain stroke cases using hospital admission medical records data. (Abstract shortened by UMI.)^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Generalized linear Poisson and logistic regression models were utilized to examine the relationship between temperature and precipitation and cases of Saint Louis encephalitis virus spread in the Houston metropolitan area. The models were investigated with and without repeated measures, with a first order autoregressive (AR1) correlation structure used for the repeated measures model. The two types of Poisson regression models, with and without correlation structure, showed that a unit increase in temperature measured in degrees Fahrenheit increases the occurrence of the virus 1.7 times and a unit increase in precipitation measured in inches increases the occurrence of the virus 1.5 times. Logistic regression did not show these covariates to be significant as predictors for encephalitis activity in Houston for either correlation structure. This discrepancy for the logistic model could be attributed to the small data set.^ Keywords: Saint Louis Encephalitis; Generalized Linear Model; Poisson; Logistic; First Order Autoregressive; Temperature; Precipitation. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study objectives were to determine risk factors for preterm labor (PTL) in Colorado Springs, CO, with emphasis on altitude and psychosocial factors, and to develop a model that identifies women at high risk for PTL. Three hundred and thirty patients with PTL were matched to 460 control patients without PTL using insurance category as an indirect measure of social class. Data were gathered by patient interview and review of medical records. Seven risk groups were compared: (1) Altitude change and travel; (2) Psychosocial ((a) child, sexual, spouse, alcohol and drug abuse; (b) neuroses and psychoses; (c) serious accidents and injuries; (d) broken home (maternal parental separation); (e) assault (physical and sexual); and (f) stress (emotional, domestic, occupational, financial and general)); (3) demographic; (4) maternal physical condition; (5) Prenatal care; (6) Behavioral risks; and (7) Medical factors. Analysis was by logistic regression. Results demonstrated altitude change before or after conception and travel during pregnancy to be non-significant, even after adjustment for potential confounding variables. Five significant psychosocial risk factors were determined: Maternal sex abuse (p = 0.006), physical assault (p = 0.025), nervous breakdown (p = 0.011), past occupational injury (p = 0.016), and occupational stress (p = 0.028). Considering all seven risk groups in the logistic regression, we chose a logistic model with 11 risk factors. Two risk factors were psychosocial (maternal spouse abuse and past occupational injury), 1 was pertinent to maternal physical condition ($\le$130 lbs. pre-pregnancy weight), 1 to prenatal care ($\le$10 prenatal care visits), 2 pertinent to behavioral risks ($>$15 cigarettes per day and $\le$30 lbs. weight gain) and 5 medical factors (abnormal genital culture, previous PTB, primiparity, vaginal bleeding and vaginal discharge). We conclude that altitude change is not a risk factor for PTL and that selected psychosocial factors are significant risk factors for PTL. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A case-control study has been conducted examining the relationship between preterm birth and occupational physical activity among U.S. Army enlisted gravidas from 1981 to 1984. The study includes 604 cases (37 or less weeks gestation) and 6,070 controls (greater than 37 weeks gestation) treated at U.S. Army medical treatment facilities worldwide. Occupational physical activity was measured using existing physical demand ratings of military occupational specialties.^ A statistically significant trend of preterm birth with increasing physical demand level was found (p = 0.0056). The relative risk point estimates for the two highest physical demand categories were statistically significant, RR's = 1.69 (p = 0.02) and 1.75 (p = 0.01), respectively. Six of eleven additional variables were also statistically significant predictors of preterm birth: age (less than 20), race (non-white), marital status (single, never married), paygrade (E1 - E3), length of military service (less than 2 years), and aptitude score (less than 100).^ Multivariate analyses using the logistic model resulted in three statistically significant risk factors for preterm birth: occupational physical demand; lower paygrade; and non-white race. Controlling for race and paygrade, the two highest physical demand categories were again statistically significant with relative risk point estimates of 1.56 and 1.70, respectively. The population attributable risk for military occupational physical demand was 26%, adjusted for paygrade and race; 17.5% of the preterm births were attributable to the two highest physical demand categories. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship between serum cholesterol and cancer incidence was investigated in the population of the Hypertension Detection and Follow-up Program (HDFP). The HDFP was a multi-center trial designed to test the effectiveness of a stepped program of medication in reducing mortality associated with hypertension. Over 10,000 participants, ages 30-69, were followed with clinic and home visits for a minimum of five years. Cancer incidence was ascertained from existing study documents, which included hospitalization records, autopsy reports and death certificates. During the five years of follow-up, 286 new cancer cases were documented. The distribution of sites and total number of cases were similar to those predicted using rates from the Third National Cancer Survey. A non-fasting baseline serum cholesterol level was available for most participants. Age, sex, and race specific five-year cancer incidence rates were computed for each cholesterol quartile. Rates were also computed by smoking status, education status, and percent ideal weight quartiles. In addition, these and other factors were investigated with the use of the multiple logistic model.^ For all cancers combined, a significant inverse relationship existed between baseline serum cholesterol levels and cancer incidence. Previously documented associations between smoking, education and cancer were also demonstrated but did not account for the relationship between serum cholesterol and cancer. The relationship was more evident in males than females but this was felt to represent the different distribution of occurrence of specific cancer sites in the two sexes. The inverse relationship existed for all specific sites investigated (except breast) although a level of statistical significance was reached only for prostate carcinoma. Analyses after exclusion of cases diagnosed during the first two years of follow-up still yielded an inverse relationship. Life table analysis indicated that competing risks during the period of follow-up did not account for the existence of an inverse relationship. It is concluded that a weak inverse relationship does exist between serum cholesterol for many but not all cancer sites. This relationship is not due to confounding by other known cancer risk factors, competing risks or persons entering the study with undiagnosed cancer. Not enough information is available at the present time to determine whether this relationship is causal and further research is suggested. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ordinal outcomes are frequently employed in diagnosis and clinical trials. Clinical trials of Alzheimer's disease (AD) treatments are a case in point using the status of mild, moderate or severe disease as outcome measures. As in many other outcome oriented studies, the disease status may be misclassified. This study estimates the extent of misclassification in an ordinal outcome such as disease status. Also, this study estimates the extent of misclassification of a predictor variable such as genotype status. An ordinal logistic regression model is commonly used to model the relationship between disease status, the effect of treatment, and other predictive factors. A simulation study was done. First, data based on a set of hypothetical parameters and hypothetical rates of misclassification was created. Next, the maximum likelihood method was employed to generate likelihood equations accounting for misclassification. The Nelder-Mead Simplex method was used to solve for the misclassification and model parameters. Finally, this method was applied to an AD dataset to detect the amount of misclassification present. The estimates of the ordinal regression model parameters were close to the hypothetical parameters. β1 was hypothesized at 0.50 and the mean estimate was 0.488, β2 was hypothesized at 0.04 and the mean of the estimates was 0.04. Although the estimates for the rates of misclassification of X1 were not as close as β1 and β2, they validate this method. X 1 0-1 misclassification was hypothesized as 2.98% and the mean of the simulated estimates was 1.54% and, in the best case, the misclassification of k from high to medium was hypothesized at 4.87% and had a sample mean of 3.62%. In the AD dataset, the estimate for the odds ratio of X 1 of having both copies of the APOE 4 allele changed from an estimate of 1.377 to an estimate 1.418, demonstrating that the estimates of the odds ratio changed when the analysis includes adjustment for misclassification. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines Hispanic levels of incorporation and access to health care. Applying the Aday and Andersen framework for the study of access, the study examined the relationship between two levels of Hispanic incorporation into U.S. society, i.e., mainstream versus ethnic, and potential and realized measures of access to health care. Data for the study were drawn from a 1992 telephone survey of 600 randomly selected Hispanics in Houston and Harris County.^ The hypotheses tested were: (1) Hispanics who are incorporated into mainstream society are more likely to have better potential and realized access to health care than those who are incorporated into ethnic-group enclaves regardless of their socioeconomic status (SES), health status and health needs, and (2) there is no interaction between the levels of incorporation (mainstream or ethnic) and SES, health status, and health needs in predicting potential and realized access.^ The data analysis supported Hypothesis One for the two measures of potential access. The results of bivariate and multiple logistic regression analyses indicated that for Hispanics in Houston and Harris County, being in the "mainstream" incorporation category increased their potential access to care, having "health insurance" and a "regular place of care". For the selected measure of realized access, having a "regular check-up", the analysis did not demonstrate statistically significant differences in having a regular check-up among Hispanics incorporated in the ethnic or mainstream incorporation categories.^ Hypothesis Two, that there is no interaction between the levels of incorporation and socioeconomic characteristics, health status, and health needs in predicting potential and realized access among Hispanics was supported by the data. The results of the logistic regression analysis showed that, after adjusting for socioeconomic status, health status, and health needs, the association between "level of incorporation" and the two measures of potential access ("health insurance" and having a "usual place of care") was not modified by the control variables nor by their interaction with level of incorporation. That is, the effect of incorporation on Hispanics' health insurance coverage, and having a usual place of care, was homogenous across Hispanics with different SES and health status.^ The main research implication of this dissertation is the employment of a theoretical framework for the assessment of cultural factors essential to research on migrating heterogeneous subpopulations. It also provided strategies to solve practical and methodological difficulties in the secondary analyses of data on these populations. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an obvious carcinogen for lung cancer. Since CBMN (Cytokinesis-blocked micronucleus) has been found to be extremely sensitive to NNK-induced genetic damage, it is a potential important factor to predict the lung cancer risk. However, the association between lung cancer and NNK-induced genetic damage measured by CBMN assay has not been rigorously examined. ^ This research develops a methodology to model the chromosomal changes under NNK-induced genetic damage in a logistic regression framework in order to predict the occurrence of lung cancer. Since these chromosomal changes were usually not observed very long due to laboratory cost and time, a resampling technique was applied to generate the Markov chain of the normal and the damaged cell for each individual. A joint likelihood between the resampled Markov chains and the logistic regression model including transition probabilities of this chain as covariates was established. The Maximum likelihood estimation was applied to carry on the statistical test for comparison. The ability of this approach to increase discriminating power to predict lung cancer was compared to a baseline "non-genetic" model. ^ Our method offered an option to understand the association between the dynamic cell information and lung cancer. Our study indicated the extent of DNA damage/non-damage using the CBMN assay provides critical information that impacts public health studies of lung cancer risk. This novel statistical method could simultaneously estimate the process of DNA damage/non-damage and its relationship with lung cancer for each individual.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite continued research and public health efforts to reduce smoking during pregnancy, prenatal cessation rates in the United States have decreased and the incidence of low birth weight has increased from 1985 to 1991. Lower socioeconomic status women who are at increased risk for poor pregnancy outcomes may be resistant to current intervention efforts during pregnancy. The purpose of this dissertation was to investigate the determinants of continued smoking and quitting among low-income pregnant women.^ Using data from cross-sectional surveys of 323 low-income pregnant smokers, the first study developed and tested measures of the pros and cons of smoking during pregnancy. The original decisional balance measure for smoking was compared with a new measure that added items thought to be more salient to the target population. Confirmatory factor analysis using structural equation modeling showed neither the original nor new measure fit the data adequately. Using behavioral science theory, content from interviews with the population, and statistical evidence, two 7-item scales representing the pros and cons were developed from a portion (n = 215) of the sample and successfully cross-validated on the remainder of the sample (n = 108). Logistic regression found only pros were significantly associated with continued smoking. In a discriminant function analysis, stage of change was significantly associated with pros and cons of smoking.^ The second study examined the structural relationships between psychosocial constructs representing some of the levels of and the pros and cons of smoking. The cross-sectional design mandates that statements made regarding prediction do not prove causation or directionality from the data or methods analysis. Structural equation modeling found the following: more stressors and family criticism were significantly more predictive of negative affect than social support; a bi-directional relationship was found between negative affect and current nicotine addiction; and negative affect, addiction, stressors, and family criticism were significant predictors of pros of smoking.^ The findings imply reversing the trend of decreasing smoking cessation during pregnancy may require supplementing current interventions for this population of pregnant smokers with programs addressing nicotine addiction, negative affect, and other psychosocial factors such as family functioning and stressors. ^