5 resultados para iron responsive element

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The coordination of the apoptotic program necessitates the timely expression of sensor, effector, and mediator molecules. Fas/CD95, a transmembrane receptor which tethers the cell-death machinery, triggers apoptosis to maintain immune homeostasis, tolerance, and surveillance. Dysregulation in Fas-mediated apoptosis, either from disproportionate expression or disruptions in the downstream signaling pathway, manifests in autoimmune disorders and certain malignant progression. ^ In this project, the transcriptional requirements underlying two modulators of Fas expression were investigated. In T-lymphocytes, activation results in potent Fas upregulation followed by an acquisition of sensitivity towards FasL-mediated apoptosis. Human fas promoter cloning and analysis have identified a cis-element critical for inducible Fas expression. EMSA studies using this region demonstrated a constitutive association with the transcription factor Sp1 and inducible NF-κB binding in response to activation. These interactions were mutually exclusive, as the rB/Sp1 element bound with recombinant Sp1 was readily displaced by increasing amounts of NF-κB p50. Thus, Fas upregulation by T-cell activation stimuli is dependent upon NF-κB binding at the fas promoter. ^ The capacity of Sp1 to direct basal Fas expression was examined through mutagenesis of several GC-rich regions within the core fas promoter. Reporter analysis of single or combinatorial mutant GC-box constructs revealed usage of a particular GC-element in moderating over 50% of basal fas transcription. Inducible expression was Sp1-independent, however, since activated Jurkat cells containing fas Sp1-mutant constructs retained equivalent reporter induction. Overall, a dual-level of transcriptional control exists in fas, where constitutive activity is monitored through Sp1 binding, whereas T-cell activation obligates NF κB transactivation. ^ In response to genotoxic damage, p53 modulates Fas levels partly by a transcription-dependent mechanism. Reconstitution of wild-type p53 in the hepatoma cell line Hep3B readily induced Fas transcription. Furthermore, fas promoter analysis identified an undescribed p53 responsive element which, when deleted, ablated p53-mediated reporter activity. Therefore, the pro-apoptotic function mediated by p53 is driven partially through the enhancement of Fas expression. ^ Altogether, events elicting Fas transcription may invoke single or overlapping mechanisms that converge at the level of promoter activity. Agents that enhance or attenuate these pathways may be therapeutically beneficial in modulating the expression and sensitivity towards Fas-dependent apoptosis. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, we investigated the regulation of the nuclear proto-oncogene, c-fos by estrogen in vivo. In the uterus, estrogen causes a rapid, dramatic and transient induction of c-fos mRNA and this occurs by transcriptional activation. We have discovered a previously unrecognized regulatory mechanism by which fos becomes desensitized to estrogen following the transient induction. We investigated three aspects of this desensitization: (1) the kinetics and general characteristics of the phenomenon; (2) the molecular mechanism of the desensitization; and (3) the relationship of desensitization to estrogen stimulated DNA synthesis. The desensitization occurs between 3-24 hours after initial hormonal stimulation and is reversible within 72 hours. The desensitization is not species specific, in that it occurs in both the rat and mouse. The desensitization also occurs in at least two estrogen responsive tissues, the uterus and vagina. The desensitization is not unique to c-fos, since both c-myc and c-jun show similar patterns of desensitization. However, the desensitization is not observed with creatine kinase B (CKB), indicating that not all estrogen inducible genes become desensitized. In the second general area, we determined the desensitization is at the transcriptional level. The desensitization is homologous, but not heterologous, since estrogen induction does not desensitize c-fos to other agents. Other studies show that the desensitization is not due to the lack of functional estrogen receptors. Taken together, these findings suggest that the desensitization occurs at the level of the estrogen responsive element. In the third major area, we demonstrated that the desensitization appears to be related to estrogen induced DNA synthesis. Support for this suggestion comes from the observation that short acting estrogens which induce fos, but not DNA synthesis, do not produce desensitization. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In various species, peripheral injury produces long-lasting sensitization of central and peripheral neurons representing the affected area. In Aplysia, memory-like traces (lasting days or weeks) of noxious peripheral stimulation include enhancement of central synaptic transmission and enhanced excitability of the central soma and peripheral branches of nociceptive sensory neurons. An important role for the cAMP-PKA-CREB pathway in consolidating long-term memory and inducing transcription-dependent synaptic potentiation has also been indicated by studies in rodents and Drosophila. ^ Much less attention has been paid to the cGMP-PKG pathway for transcription-dependent plasticity. Nevertheless, the cGMP-PKG pathway has been implicated in activity-dependent neural alterations lasting hours, and may trigger some forms of persistent pain. Recent evidence indicates PKG can regulate gene expression in the brain and several properties make it an attractive candidate for inducing long-term memories. ^ This dissertation reports that brief, noxious stimulation of a behaving, semi-intact preparation from mollusc, Aplysia californica, produces transcription-dependent, long-term hyperexcitability (LTH) of nociceptive sensory neurons that requires a nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and which lasts for at least 24 hours. Intracellular injection of cGMP is sufficient to induce LTH. Similarly, body wall injury induces LTH which can be blocked with specific inhibitors of the NO-cGMP-PKG pathway such as L-NMMA, ODQ, Rp-8-cGMPS, PKI-G and KT5823 by isolated perfusion of pleural ganglion sensory cells in or directly by intracellular injection. In contrast, specific inhibitors of the cAMP-PKA pathway (Rp-8-cAMPS, PKI-A and H-89) failed to block injury-induced LTH. Interestingly, co-injection of the cAMP-responsive element (CRE) blocked the induction of both cAMP and injury-induced LTH, but not cGMP-induced LTH. Furthermore, co-injection of cAMP and cGMP with the Ca2+ buffer BAPTA in reduced Ca2+ seawater blocked cAMP-, but not cGMP-induced LTH. These findings demonstrate that the NO-cGMP-PKG pathway and at least one other pathway (perhaps mediated by Ca2+), but not the cAMP-PKA pathway, are critical for inducing LTH during transient, noxious stimulation.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tumor suppressor p53 is mutated in over 50% of human sporadic tumors originating from diverse tissues. p53 responds to DNA damage and cell stress by activating the transcription of a variety of target genes, the protein products of which then initiate either growth arrest or apoptosis. ^ A p53 target with a particularly intriguing function is the oncogene MDM2. MDM2 functions, in part, by binding to and inhibiting p53's activity. Overexpression of MDM2, by gene amplification, has been found in 30% of human sarcomas harboring a wild type p53, indicating that an increase in MDM2 levels is sufficient for p53 inactivation. Mice carrying a homozygous null allele for mdm2 exhibit an early embryonic lethality that is completely rescued in a p53-null background. These data indicate that MDM2's only critical function in early mouse embryogenesis is the negative regulation of p53. ^ The mdmx gene is the first additional member of the mdm2 gene family to be isolated. MDMX, like MDM2, contains a RING-finger domain, ATP binding domain and a p53 binding domain, which retains the ability to bind and inhibit p53 transactivation in vitro. However, mdmx does not appear to be transcriptionally regulated by p53. We have cloned and characterized the murine mdmx genomic locus from a mouse 129 genomic library. The mdmx gene contains 11 exons, spans approximately 37 Kb of DNA, and is located on mouse chromosome 1. The genomic organization of the mdmx gene is identical to that of mdm2 except at the 5′ end of the gene near the p53 responsive element. Northern expression analysis of mdmx transcripts during mouse embryogenesis and in adult tissues revealed constitutive and ubiquitous expression throughout adult tissues and embryonic development. To determine the in vivo function of MDMX, mice carrying a null allele of mdmx have been generated. Mdmx homozygous null mice are early embryonic lethal. Mdmx null mice do not develop beyond 9.5 dpc and can be discerned by gross dissection as early as 7.5 dpc. Utilizing TUNEL and BrdU assays on 7.5 dpc histological sections we have determined that the mutant embryos are dying due to increased levels of growth arrest, but not apoptosis. Surprisingly, Mdmx homozygous null mice are viable in a p53 null background, indicating that MDMX is also very important in the negative regulation of p53. ^