3 resultados para immunoassays

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelets represent one of the largest storage pools of angiogenic and oncogenic growth factors in the human body. The observation that thrombocytosis (platelet count >450,000/uL) occurs in patients with solid malignancies was made over 100 years ago. However, the clinical and biological implications as well as the underlying mechanism of paraneoplastic thrombocytosis associated with ovarian carcinoma remains unknown and were the focus of the current study. Following IRB approval, patient data were collected on 619 patients from 4 U.S. centers and used to test associations between platelet count at initial diagnosis, clinicopathologic factors, and outcome. In vitro effects of plasma-purified platelets on ovarian cancer cell proliferation, docetaxel-induced apoptosis, and migration were evaluated using BrdU-PI flow cytometric and two-chamber chemotaxis assays. In vivo effects of platelet depletion on tumor growth, proliferation, apoptosis, and angiogenesis were examined using an anti-platelet antibody (anti-mouse glycoprotein 1ba, Emfret) to reduce platelets by 50%. Complete blood counts and number of mature megakaryocytes in the spleen and bone marrow were compared between control mice and ovarian cancer-bearing mice. Plasma levels of key megakaryo- and thrombopoietic factors including thrombopoietin (TPO), IL-1a, IL-3, IL-4, IL-6, IL-11, G-CSF, GM-CSF, stem cell factor, and FLT-3 ligand were assayed in a subset of 150 patients at the time of initial diagnosis with advanced stage, high grade epithelial ovarian cancer using immunobead-based cytokine profiling coupled with the Luminex® xMAP platform. Plasma cytokines significantly associated with thrombocytosis in ovarian cancer patients were subsequently evaluated in mouse models of ovarian cancer using ELISA immunoassays. The results of human and mouse plasma cytokine profiling were used to inform subsequent in vivo studies evaluating the effect of siRNA-induced silencing of select megakaryo- and thrombopoietic cytokines on paraneoplastic thrombocytosis. Thirty-one percent of patients had thrombocytosis at initial diagnosis. Compared to patients with normal platelet counts, women with thrombocytosis were significantly more likely to have advanced stage disease (p<0.001) and poor median progression-free (0.94 vs 1.35 years, p<0.001) and overall survival (2.62 vs 4.65 years, p<0.001). On multivariate analysis, thrombocytosis remained an independent predictor of decreased overall survival. Our analysis revealed that thrombocytosis significantly increases the risk of VTE in ovarian cancer patients and that thrombocytosis is an independent predictor of increased mortality in women who do develop a blood clot. Platelets increased ovarian cancer cell proliferation and migration by 4.1- and 2.8-fold (p<0.01), respectively. Platelets reduced docetaxel-induced apoptosis in ovarian cancer cells by 2-fold (p<0.001). In vivo, platelet depletion reduced tumor growth by 50%. Staining of in vivo specimens revealed decreased tumor cell proliferation (p<0.001) and increased tumor and endothelial cell apoptosis (p<0.01). Platelet depletion also significantly decreased microvessel density and pericyte coverage (p<0.001). Platelet counts increase by 31-130% in mice with invasive ovarian cancer compared to controls (p<0.01) and strongly correlate with mean megakaryocyte counts in the spleen and bone marrow (r=0.95, p<0.05). Plasma levels of TPO, IL-6, and G-CSF were significantly increased in ovarian cancer patients with thrombocytosis. Plasma levels of the same cytokines were found to be significantly elevated in orthotopic mouse models of ovarian cancer, which consistently develop paraneoplastic thromocytosis. Silencing TPO, IL-6, and G-CSF significantly abrogated paraneoplastic thrombocytosis in vivo. This study provides new understanding of the clinical and biological significance of paraneoplastic thrombocytosis in ovarian cancer and uncovers key humoral factors driving this process. Blocking the development of paraneoplastic thrombocytosis and interfering with platelet-cancer cell interactions could represent novel therapeutic strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to investigate the immunochemical nature of the polyclonal immune response to the 14mer peptide TINKEDDESPGLYG and to identify interactions among antibodies to more than one epitope. Two groups of rabbits were immunized with the 14mer peptide and a Keyhole Limpet hemocyanin (KLH) carrier, but with KLH attached either to the 14mer's N- or C-terminus. Two approximate epitopes were mapped by an antibody-capture enzyme-linked immunosorbent assay method using antiserum obtained when KLH was oriented on the C-terminus of the 14mer. A precise mapping of the epitopes performed with inhibition enzyme immunoassays (iEIAs) resulted in an N-terminal 6mer epitope TINKED and a C-terminal 10mer epitope EDDESPGLYG. The epitopes overlapped by two amino acids. IEIAs and iEIAs incorporating antibody-blocking peptides indicated that the two anti-epitope antibody fractions did not interfere with one anothers' epitope binding. It was postulated that the anti-TINKED and anti-EDDESPGLYG antibody fractions individually bind their respective hydrophobic epitope "core" region at the N- or C-terminal of peptide TINKEDDESPGLYG, while sharing the two hydrophilic overlap amino acids. This antibody "lap joint" binding interaction can be accomplished by each of the anti-epitope antibodies binding an opposite side of the epitope overlap region in the shallow periphery of its binding site. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examined cellular mechanisms involved in the production and secretion of human (gamma)IFN. The hypothesis of this investigation was that (gamma)IFN is an export glycoprotein whose synthesis in human T lymphocytes is dependent on membrane stimulation, polypeptide synthesis in the rough endoplasmic reticulum, packaging in the Golgi complex, and release from the cell by exocytosis.^ The model system for this examination utilized T lymphocytes from normal donors and patients with chronic lymphocytic leukemia (CLL) induced in vitro with the tumor promoter, phorbol 12-myristate 13-acetate (PMA) and the lectin, phytohemagglutinin (PHA) to produce (gamma)IFN. This study reconfirmed the ability of PMA and PHA to synergistically induce (gamma)IFN production in normal T lymphocytes, as measured by viral inhibition assays and radio-immunoassays for (gamma)IFN. The leukemic T cells were demonstrated to produce (gamma)IFN in response to treatment with PHA. PMA treatment also induced (gamma)IFN production in the leukemic T cells, which was much greater than that observed in similarly treated normal T cells. In these same cells, however, combined treatment of the agents was shown to be ineffective at inducing (gamma)IFN production beyond the levels stimulated by the individual agents. In addition, the present study reiterated the synergistic effect of PMA/PHA on the stimulation of growth kinetics in normal T cells. The cell cycle of the leukemic T cells was also responsive to treatment with the agents, particularly with PMA treatment. A number of morphological alterations were attributed to PMA treatment including the acquisition of an elongated configuration, nuclear folds, and large cytoplasmic vacuoles. Many of the effects were observed to be reversible with dilution of the agents, and reversion to this state occurred more rapidly in the leukemic T cells. Most importantly, utilization of a thin section immuno-colloidal gold labelling technique for electron microscopy provided, for the first time, direct evidence of the cellular mechanism of (gamma)IFN production and secretion. The results of this latter study support the idea that (gamma)IFN is produced in the rough endoplasmic reticulum, transferred to the Golgi complex for accumulation and packaging, and released from the T cells by exocytosis. ^