23 resultados para genetic regulation

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spontaneously hypertensive rat (SHR) is a model of essential hypertension. During the early development of hypertension, the SHR demonstrates increased proximal tubule (PT) Na+ reabsorption. I hypothesized that the increased PT Na+ reabsorption exhibited by the young SHR was due to altered sub-cellular distribution of Na+, K +-ATPase compared to the normotensive Wistar Kyoto (WKY). The hypothesis is supported, herein, by observations of greater Na+, K +-ATPase α 1 abundance in PT plasma membrane and lower abundance in late endosomes of 4wk SHR despite no difference in total PT α 1 abundance. There is a greater amount of Ser-18 unphosphorylated α 1 in the 4wk SHR PT. Total PT Na+, K+-ATPase γ abundance is greater in SHR at 4wk and 16wk but γ abundance in plasma membrane is greater only at 4wk. The phosphatase, calcineurin, was chosen for study because it is involved in the stimulation of Na+, K +-ATPase. No difference in calcineurin coding sequence, expression, or activity was observed in SHR. Gene expression arrays were next used to find candidate genes involved in the regulation of Na+, K +-ATPase. The first candidate analyzed was soluble epoxide hydrolase (sEH). The gene encoding sEH (EPHX2) showed lower expression in SHR. There was also a reduction in sEH protein abundance but there was no correlation between protein abundance and blood pressure in F2 progeny. Two EPHX2 alleles were identified, an ancestral allele and a variant allele containing four polymorphisms. sEH activity was greater in animals carrying the variant allele but the inheritance of the variant allele did not correlate with blood pressure. Gene expression arrays also led to the examination of genes involved in redox balance/Na+, K+-ATPase regulation. A pattern of lower expression of genes involved in reactive radical detoxification in SHR was discerned. Six transcription factor binding sites were identified that occurred more often in these genes. Three transcription factors that bind to the HNF1 site were expressed at lower levels in SHR. This points to the HNF1 transcriptional complex as an important trans-acting regulator of a wide range of genes involved in altered redox balance in SHR. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DMRT (Doublesex and Mab-3 related transcription factor) proteins generally associated with sexual differentiation in many organisms share a common DNA binding domain and are often expressed in reproductive tissues. Aside from doublesex, which is a central factor in the regulation of sex determination, Drosophila possesses three different dmrt genes that are of unknown function. Because the association with sexual differentiation and reproduction is not universal and some DMRT proteins have been found to play other developmental roles we chose to further characterize one of these Drosophila genes. We carried out genetic analysis of dmrt93B, which was previously found to be expressed sex-specifically in the developing somatic gonad and to affect testis morphogenesis in RNAi knockdowns. In order to disrupt this gene, the GAL4 yeast transcriptional activator followed by a polyadenylation signal was inserted after the dmrt93B start codon and introduced into the genome by homologous recombination. Analysis of the knock-in mutation as well as a small deletion removing all dmrt93B sequence demonstrate that loss of function causes partial lethality at the late pupal stage. Surprisingly, these mutations have no significant effect on gonad formation or male fertility. Analysis of GAL4-driven GFP reporter expression indicates that the dmrt93B promoter activity is highly specific to neurons in the suboesophageal and proventricular ganglion in larva and adult of both sexes suggesting a possible role in digestive tract function. Using the Capillary Feeder (CAFÉ) assay to measure daily food intake we find that reduction in this gene’s function leads to an increase in food consumption. These results suggest dmrt93 plays an important role in the formation or maintenance of neurons that affect feeding and support the idea that dmrt genes may not be restricted to roles in sexual differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1) transcription factors regulate many important biological and pathological processes. Activation of NF-kappaB is regulated by the inducible phosphorylation of NF-kappaB inhibitor IkappaB by IkappaB kinase. In contrast, Fos, a key component of AP-1, is primarily transcriptionally regulated by serum responsive factors (SRFs) and ternary complex factors (TCFs). Despite these different regulatory mechanisms, there is an intriguing possibility that NF-kappaB and AP-1 may modulate each other, thus expanding the scope of these two rapidly inducible transcription factors. To determine whether NF-kappaB activity is involved in the regulation of fos expression in response to various stimuli, we analyzed activity of AP-1 and expression of fos, fosB, fra-1, fra-2, jun, junB, and junD, as well as AP-1 downstream target gene VEGF, using MDAPanc-28 and MDAPanc-28/IkappaBalphaM pancreatic tumor cells and wild-type, IKK1-/-, and IKK2-/- murine embryonic fibroblast cells. Our results show that elk-1, a member of TCFs, is one of the NF-kappaB downstream target genes. Inhibition of NF-kappaB activity greatly decreased expression of elk-1. Consequently, the reduced level of activated Elk-1 protein by extracellular signal-regulated kinase impeded constitutive, serum-, and superoxide-inducible c-fos expression. Thus, our study revealed a distinct and essential role of NF-kappaB in participating in the regulation of elk-1, c-fos, and VEGF expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The present study defines genomic loci underlying coordinate changes in gene expression following retinal injury. METHODS: A group of acute phase genes expressed in diverse nervous system tissues was defined by combining microarray results from injury studies from rat retina, brain, and spinal cord. Genomic loci regulating the brain expression of acute phase genes were identified using a panel of BXD recombinant inbred (RI) mouse strains. Candidate upstream regulators within a locus were defined using single nucleotide polymorphism databases and promoter motif databases. RESULTS: The acute phase response of rat retina, brain, and spinal cord was dominated by transcription factors. Three genomic loci control transcript expression of acute phase genes in brains of BXD RI mouse strains. One locus was identified on chromosome 12 and was highly correlated with the expression of classic acute phase genes. Within the locus we identified the inhibitor of DNA binding 2 (Id2) as a candidate upstream regulator. Id2 was upregulated as an acute phase transcript in injury models of rat retina, brain, and spinal cord. CONCLUSIONS: We defined a group of transcriptional changes associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and candidate regulators that control transcript levels of acute phase genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous results indicated that translation of four mitochondrion-encoded genes and one nucleus-encoded gene (COX4) is repressed in mutants (pgs1Delta) of Saccharomyces cerevisiae lacking phosphatidylglycerol and cardiolipin. COX4 translation was studied here using a mitochondrially targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5' and 3' untranslated regions (UTRs). Lack of mtGFP expression independent of carbon source and strain background was established to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but was rather caused directly by the lack of phosphatidylglycerol and cardiolipin in mitochondrial membranes. Reintroduction of a functional PGS1 gene under control of the ADH1 promoter restored phosphatidylglycerol synthesis and expression of mtGFP. Deletion analysis of the 5' UTR(COX4) revealed the presence of a 50-nucleotide fragment with two stem-loops as a cis-element inhibiting COX4 translation. Binding of a protein factor(s) specifically to this sequence was observed with cytoplasm from pgs1Delta but not PGS1 cells. Using HIS3 and lacZ as reporters, extragenic spontaneous recessive mutations that allowed expression of His3p and beta-galactosidase were isolated, which appeared to be loss-of-function mutations, suggesting that the genes mutated may encode the trans factors that bind to the cis element in pgs1Delta cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic cancer is one of the most lethal type of cancer due to its high metastasis rate and resistance to chemotherapy. Pancreatic fibrosis is a constant pathological feature of chronic pancreatitis and the hyperactive stroma associated with pancreatic cancer. Strong evidence supports an important role of cyclooxygenase-2 (COX-2) and COX-2 generated prostaglandin E2 (PGE2) during pancreatic fibrosis. Pancreatic stellate cells (PSC) are the predominant source of extracellular matrix production (ECM), thus being the key players in both diseases. Given this background, the primary objective is to delineate the role of PGE2 on human pancreatic stellate cells (PSC) hyper activation associated with pancreatic cancer. This study showed that human PSC cells express COX-2 and synthesize high levels of PGE2. PGE2 stimulated PSC migration and invasion; expression of extra cellular matrix (ECM) genes and tissue degrading matrix metallo proteinases (MMP) genes. I further identified the PGE2 EP receptor responsible for mediating these effects on PSC. Using genetic and pharmacological approaches I identified the receptor required for PGE2 mediates PSC hyper activation. Treating PSC with Specific antagonists against EP1, EP2 and EP4, demonstrated that blocking EP4 receptor only, resulted in a complete reduction of PGE2 mediated PSC activation. Furthermore, siRNA mediated silencing of EP4, but not other EP receptors, blocked the effects of PGE2 on PSC fibrogenic activity. Further examination of the downstream pathway modulators revealed that PGE2 stimulation of PSC involved CREB and not AKT pathway. The regulation of PSC by PGE2 was further investigated at the molecular level, with a focus on COL1A1. Collagen I deposition by PSC is one of the most important events in pancreatic cancer. I found that PGE2 regulates PSC through activation of COL1A1 expression and transcriptional activity. Downstream of PGE2, silencing of EP4 receptor caused a complete reduction of COL1A1 expression and activity supporting the role of EP4 mediated stimulation of PSC. Taken together, this data indicate that PGE2 regulates PSC via EP4 and suggest that EP4 can be a better therapeutic target for pancreatic cancer to reduce the extensive stromal reaction, possibly in combination with chemotherapeutic drugs can further kill pancreatic cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The murine sarcoma virus MuSVts110 exhibits an alternative RNA splicing pattern. Like other simple retroviruses, MuSVts110 pre-mRNA splicing is balanced to allow the production of both spliced and unspliced RNA during the replicative cycle. In addition to balance, MuSVts110 RNA splicing exhibits a unique growth-temperature restriction to splicing; temperatures below 33$\sp\circ$C are permissive for splicing while temperatures of 37$\sp\circ$C or above are non-permissive. Previous work has established that this thermosensitive splicing phenotype is mediated in cis by viral transcript features. Here we show that at least three sequence elements regulate the MuSVts110 splicing phenotype. First, the MuSVts110 branchpoint (BP) and poly-pyrimidine tract (PPT) were found to be determinants of overall splicing efficiency. Wild-type MuSVts110 possesses a weak BP and PPT adjacent to the 3$\sp\prime$ splice site. Introduction of a strong BP caused MuSVts110 splicing to proceed to virtual completion in vivo, thus losing any vestige of balance or thermosensitivity. In in vitro splicing extracts, the strong BP overcame a blockade to wt MuSVts110 splicing at both the first and second catalytic steps. Weakening the consensus nature of the strong BP allowed the recovery of thermosensitive splicing in vivo, and reinstated the blockades to splicing in vitro, arguing that a suboptimal BP is an unusual manifestation of the proportional splicing pattern of retroviruses. The PPT is essential for accurate recognition of the BP sequence by the splicing machinery. Lengthening the PPT of MuSVts110 from 9 to 19 consecutive pyrimidines increased the overall efficiency of splicing in vivo dramatically, but was less effective than the strong BP in overriding the restriction on splicing imposed by high growth temperatures. Finally, decreasing gradually the overall size of the intron unexpectedly reduced splicing efficiency at growth temperatures permissive for splicing, suggesting that non-conserved sequences within the intron of MuSVts110 participate in splicing regulation as well. Taken together, these results suggest a mechanism of control in which MuSVts110 splicing is modulated by the entire intron, but principally by suboptimal signals at the splice acceptor site. Furthermore, this retroviral system provides a powerful genetic method for selection and analysis of mutations that affect splicing. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The myocyte enhancer factor (MEF)-2 family of transcription factors has been implicated in the regulation of muscle transcription in vertebrates, but the precise position of these regulators within the genetic hierarchy leading to myogenesis is unclear. The MEF2 proteins bind to a conserved A/T-rich DNA sequence present in numerous muscle-specific genes, and they are expressed in the cells of the developing somites and in the embryonic heart at the onset of muscle formation in mammals. The MEF2 genes belong to the MADS box family of transcription factors, which control specific programs of gene expression in species ranging from yeast to humans. Each MEF2 family member contains two highly conserved protein motifs, the MADS domain and the MEF2-specific domain, which together provide the MEF2 factors with their unique DNA binding and dimerization properties. In an effort to further define the function of the MEF2 proteins, and to evaluate the degree of conservation shared among these factors and the phylogenetic pathways that they regulate, we sought to identify MEF2 family members in other species. In Drosophila, a homolog of the vertebrate MEF2 genes was identified and termed D-mef2. The D-MEF2 protein binds to the consensus MEF2 element and can activate transcription through tandem copies of that site. During Drosophila embryogenesis, D-MEF2 is specific to the mesoderm germ layer of the developing embryo and becomes expressed in all muscle cell types within the embryo. The role of D-mef2 in Drosophila embryogenesis was examined by generating a loss-of-function mutation in the D-mef2 gene. In embryos homozygous for this mutant allele, somatic, cardiac, and visceral muscles fail to differentiate, but precursors of these myogenic lineages are normally specified and positioned. These results demonstrate that different muscle cell types share a common myogenic differentiation program controlled by MEF2 and suggest that this program has been conserved from Drosophila to mammals. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The differentiation of the reproductive organs is an essential developmental process required for the proper transmission of the genetic material. Müllerian inhibiting substance (MIS) is produced by testes and is necessary for the regression of the Müllerian ducts: the anlagen of the uterus, fallopian tubes and cervix. In vitro and standard transgenic mouse studies indicate that the nuclear hormone receptor Steroidogenic factor 1 (SF-1) and the transcription factor SOX9 play an essential role in the regulation of Mis. To test this hypothesis, mutations in the endogenous SF-1 and SOX9 binding sites in the mouse Mis promoter were introduced by gene targeting in embryonic stem (ES) cells. In disagreement with cell culture and transgenic mouse studies, male mice homozygous for the mutant SF-1 binding site correctly initiated Mis transcription in the fetal testes, although at significantly reduced levels. Surprisingly, sufficient Mis was produced for complete elimination of the Müllerian duct system. However, when the SF-1 binding site mutation was combined with an Mis -null allele, the further decrease in Mis levels led to a partial retention of uterine tissue, but only at a distance from the testes. In contrast, males homozygous for the mutant SOX9 binding site did not initiate Mis transcription, resulting in pseudohermaphrodites with a uterus and oviducts. These studies suggest an essential role for SOX9 in the initiation of Mis transcription, whereas SF-1 appears to act as a quantitative regulator of Mis transcript levels perhaps for influencing non-Müllerian duct tissues. ^ The Mis type II receptor, a member of the TGF- b superfamily, is also required for the proper regression of the Müllerian ducts. Mis type II receptor-deficient human males and their murine counterparts develop as pseudohermaphrodites. A lacZ reporter cassette was introduced into the mouse Mis type II receptor gene, by homologous recombination in ES cells. Expression studies, based on b -galactosidase activity, show marked expression of the MIS type II receptor in the postnatal Sertoli cells of the testis as well as in the prenatal and postnatal granulosa cells of the ovary. Expression is also seen in the mesenchymal cells surrounding the Müllerian duct and in the longitudinal muscle layer of the uterus. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The poly-D-glutamic acid capsule of Bacillus anthracis is considered essential for lethal anthrax disease. Yet investigations of capsule function have been limited primarily to attenuated B. anthracis strains lacking certain genetic elements. In work presented in this thesis, I constructed and characterized a genetically complete (pXO1 + pXO2+) B. anthracis strain (UT500) and isogenic mutants deleted for two previously identified capsule gene regulators, atxA and acpA, and a newly-identified regulator, acpB. Results of transcriptional analysis and microscopy revealed that atxA controls expression of the first gene of the capsule biosynthesis operon, capB, via positive transcriptional regulation of acpA and acpB. acpA and acpB appear to be partial functional homologs. Deletion of either gene alone has little effect on capsule synthesis. However, a mutant deleted for both acpA and acpB is noncapsulated. Thus, in contrast to previously published models, my results suggest that atxA is the master regulator of cap gene expression in a genetically complete strain. A detailed transcriptional analysis of capB and the regulatory genes was performed to establish the effects of the regulators and CO2/bicarbonate on specific mRNAs of target genes. CO2/bicarbonate is a well-established signal for B. anthracis capsule synthesis in culture. Taqman RT-PCR results indicated that growth in the presence of elevated CO2 greatly increased expression of acpA, acpB and capB but not atxA. 5′ end mapping of capB and acpA revealed atxA-regulated and atxA-independent transcriptional start sites for both genes. All atxA-regulated start sites were also CO2-regulated. A single atxA-independent start site was identified 5 ′ of acpB. However, RT-PCR analysis indicated that capD and acpB are co-transcribed. Thus, it is likely that atxA-mediated control of acpB expression occurs via transcriptional activation of the atxA-regulated start sites of capB. Finally, I examined the contribution of the B. anthracis capsule to virulence. The virulence of the parent strain, mutants deleted for the capsule biosynthesis genes ( capBCAD), and mutants missing the capsule regulator genes was compared using a mouse model for inhalation anthrax. The data indicate that in this model, capsule is essential for virulence. Mice survived infection with the noncapsulated capBCAD and acpA acpB mutants. These mutants initiated germination in the lung, but did not disseminate to the spleen. The acpA mutant had an LD50 value similar to the parent strain and was able to disseminate and cause lethal infection. Unexpectedly, the acpB mutant had a higher LD 50 and a reduced ability to disseminate. During in vitro culture, the acpB single mutant produces capsule and toxin similar to the parent strain. It is likely that acpB regulates the expression of downstream genes that contribute to the virulence of B. anthracis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the major anionic phospholipids predominantly found in the mitochondrial inner membrane of eukaryotic cells, cardiolipin (CL) and its precursor phosphatidylglycerol (PG) are of great importance in many critical mitochondrial processes. Pgs1Δ cells of Saccharomyces cerevisiae lacking both PG and CL display severe mitochondrial defects. Translation of several proteins including products of four mitochondrial DNA (mtDNA) encoded genes (COX1, COX2, COX3, and COB ) and one nuclear-encoded gene (COX4) is inhibited. The molecular basis of this phenotype was analyzed using a combined biochemical, molecular and genetic approach. ^ Using a mitochondrial targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5′ and 3′ untranslated regions (UTRs), lack of mtGFP expression independent of carbon source and strain background was confirmed to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but rather caused directly by the lack of PG/CL in the mitochondrial membrane. Re-introduction of a functional PGS1 gene restored PG synthesis and expression of the above mtGFP. Deletional analysis of the 5′ UTR of COX4 mRNA revealed the presence of a 50 nt sequence as a cis-acting element inhibiting COX4 translation. Using similar constructs with HIS3 and lacZ as reporter genes, extragenic spontaneous mutations that allowed expression of His3p and β-galactosidase were isolated, which appeared to be recessive and derived from loss-of-function mutations as determined by mating analysis. Using a tetracycline repressible plasmid-borne PGS1 expression system and an in vivo mitochondrial protein translation method, the translation of mtDNA encoded COX1 and COX3 mRNAs was shown to be significantly inhibited in parallel with reduced levels of PG/CL content. Therefore, the cytoplasmic translation machinery appears to be able to sense the level of PG/CL in mitochondria and regulate COX4 translation coordinately with the mtDNA encoded subunits. ^ The essential requirement of PG and CL in mitochondrial function was further demonstrated in the study of CL synthesis by factors affecting mitochondrial biogenesis such as carbon source, growth phase or mitochondrial mutations at the level of transcription. We have also demonstrated that CL synthesis is dependent on the level of PG and INO2/INO4 regulatory genes. ^