4 resultados para fenestration of lamina terminalis

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the fifty-five years since the origin of the modern concept of stress, a variety of neurochemical, physiological, behavioral and pathological data have been collected in order to define stress and catalogue the components of the stress response. Over the last twenty-five years, as interest in the neural mechanisms underlying the stress response grew, most of the studies have focused on the hypothalamus and major limbic structures such as the amygdala or on nuclei involved in neurochemical changes observed during stress. There are other CNS sites, such as the bed nucleus of the stria terminalis (BNST), that neuroanatomical and neurochemical studies suggest may be involved in stress, but these sites have rarely been studied. Four experiments were performed for this dissertation, the goal of which was to examine the BNST to determine its role in the regulation of the stress response. The first experiment demonstrated that electrical stimulation of BNST was sufficient to produce stress-like behaviors. The second experiment demonstrated that single BNST neurons altered their firing rate in response to both a noxious somatosensory stimulus such as tail pinch and electrical stimulation of the amygdala (AmygS). The third experiment showed that the opioid, cholinergic, and noradrenergic systems, three neurotransmitter systems implicated in the control of the stress response, were effective in altering the firing rate of BNST neurons. The fourth experiment demonstrated that the cholinergic effects were mediated via muscarinic receptors and showed that the effects of AmygS were not mediated via cholinergic pathways. Collectively, these findings provide a possible explanation for the nonspecificity in causation of stress and the invariability of the stress response and suggest a neurochemical basis for its pharmacological control. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrophysiological experiments were performed on 96 male New Zealand white rabbits, anesthetized with urethane. Glass electrodes, filled with 2M NaCl, were used for microstimulation of three fiber pathways projecting from "limbic" centers to the ventromedial nucleus of the hypothalamus (VMH). Unitary and field potential recordings were made in the VMH after stimulation.^ Stimulation of the lateral portion of the fimbria, which carries fibers from the ventral subiculum of the hippocampal formation, evokes predominantly an inhibition of neurons medially in the VMH, and excitation of neurons located laterally.^ Stimulation of the dorsal portion of the stria terminalis, which carries fibers from the cortical nucleus of the amygdala, also produces predominantly an inhibition of cells medially and excitation laterally.^ Stimulation of the ventral component of the stria terminalis, which carries fibers from the medial nucleus of the amygdala, evokes excitation of cell medially, with little or no response seen laterally.^ Cells recorded medially in the VMH received convergent inputs from each of the three fiber systems: inhibition from fimbria and dorsal stria stimulation, excitation from ventral stria stimulation.^ The excitatory unitary responses recorded medially to ventral stria stimulation and laterally to fimbria and dorsal stria stimulation were subjected to a series of threshold stimulus intensities. From these tests it was determined that each of these three projections terminates monosynaptically on VMH neurons.^ The evidence for convergence upon single VMH neurons of projections from the amygdala and the hippocampal formation suggests this area of the brain to be important for integration of information from these two limbic centers. The VMH has been implied in a number of behavioral states: eating, reproduction, defense and aggression; it has further been linked to control of the anterior pituitary. These data provide a functional circuit through which the amygdaloid complex and the hippocampal formation can channel information from higher cortical centers into a hypothalamic area capable of coordinating behavioral and hormonal responses. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gut was studied as a prototypical mucosal membrane in the murine BDF-1 syngeneic bone marrow transplant model. Measures of jejunal intraepithelial lymphocytes (IELs) and crypt cells were obtained by standard techniques and a method of quantifying gut lamina propria plasma cells (PCs) was developed. The degree of ablation of gut PCs and IELs after 900 rads total body irradiation with ('60)Co, and their repopulation effected by transplantation with 2.0 x 10('5) or 1.0 x 10('6) bone marrow cells demonstrated a prolonged period of profound depression in population levels of these cells which was not reflected by the extent of damage sustained to the epithelium. Differences in the depopulation and recovery of gut PCs and IELs revealed a tendency towards initial differentiation of effector cells. A positive dose response to high bone marrow cell innocula was obtained. Subsequent studies determined that gut IEL and PC repopulation was potentiated by the addition of IELs or buffy coat cells (BCs) to the bone marrow transplant. A method of isolating 1.4 - 4.0 x 10('7) viable IELs per gram of murine small bowel was devised employing intralumenal hyaluronidase digestion of the epithelial layer and centrifugation of the resulting suspension through discontinuous Percoll gradients. Irradiated mice received 2.0 x 10('5) bone marrow cells along with an equal number of IELs or BCs. The extent and duration of depression of numbers of IELs and PCs was markedly reduced by the addition of the IEL isolate to the transplantation innocula, and to a lesser degree by the addition of BCs. The augmentation of repopuation far exceeded that expected by simple lodging of cells suggesting that the additionally transplanted cells contained a subpopulation of mucosal membrane lymphoid stem cells or helper cells. Correlation analysis of PC versus IEL levels suggests a possible feedback mechanism governing the relative size of their populations. Normal ratios of IgA, IgM, and IgG bearing PCs was maintained post transplantation with all of the regimens. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth and regeneration of postnatal skeletal muscle requires a population of mononuclear myogenic cells, called satellite cells to add/replace myonuclei, which are postmitotic. Wedged between the sarcolemma and the basal lamina of the skeletal muscle fiber, these cells function as the stem cells of mature muscle fibers. Like other normal diploid cells, satellite cells undergo cellular senescence. Investigations of aging in both rodents and humans have shown that satellite cell self-renewal capacity decreases with advanced age. As a consequence, this could be a potential reason for the characteristically observed age-associated loss in skeletal muscle mass (sarcopenia). This provided the rationale that any intervention that can further increase the proliferative capacity of these cells should potentially be able to either delay, or even prevent sarcopenia. ^ Using clonogenicity assays to determine a cell's proliferation potential, these studies have shown that IGF-I enhances the doubling potential of satellite cells from aged rodents. Using a transgenic model, where the mice express the IGF-I transgene specifically in their striated muscles, some of the underlying biochemical mechanisms for the observed increase in replicative life span were delineated. These studies have revealed that IGF-I activates the PI3/Akt pathway to mediate downregulation of p27KIP1, which consequently is associated with an increase in cyclin E-cdk2 kinase activity, phosphorylation of pRb, and upregulation of cyclin A protein. However, the beneficial effects of IGF-I on satellite cell proliferative potential appears to be limited as chronic overexpression of IGF-I in skeletal muscles did not protect against sarcopenia in 18-mo old mice, and was associated with an exhaustion of satellite cell replicative reserves. ^ These results have shown that replicative senescence can be modulated by environmental factors using skeletal muscle satellite cells as a model system. A better understanding of the molecular basis for enhancement of proliferative capacity by IGF-I will provide a rational basis for developing more effective counter-measures against physical frailty. However, the implications of these studies are that these beneficial effects of enhanced proliferative potential by IGF-I may only be over a short-term period, and other alternative approaches may need to be considered. ^