19 resultados para epithelial-to-mesenchymal transition

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidermal Growth Factor Receptor (EGFR) overexpression occurs in about 90% of Head and Neck Squamous Cell Carcinoma (HNSCC) cases. Aberrant EGFR signaling has been implicated in the malignant features of HNSCC. Thus, EGFR appears to be a logical therapeutic target with increased tumor specificity for the treatment of HNSCC. Erlotinib, a small molecule tyrosine kinase inhibitor, specifically inhibits aberrant EGFR signaling in HNSCC. Only a minority of HNSCC patients were able to derive a substantial clinical benefit from erlotinib. ^ This dissertation identifies Epithelial to Mesenchymal Transition (EMT) as the biological marker that distinguishes EGFR-dependent (erlotinib-sensitive) tumors from the EGFR-independent (erlotinib-resistant) tumors. This will allow us to prospectively identify the patients who are most likely to benefit from EGFR-directed therapy. More importantly, our data identifies the transcriptional repressor DeltaEF1 as the mesenchymal marker that controls EMT phenotype and resistance to erlotinib in human HNSCC lines. si-RNA mediated knockdown of DeltaEF1 in the erlotinib-resistant lines resulted in reversal of the mesenchymal phenotype to an epithelial phenotype and significant increase in sensitivity to erlotinib. ^ DeltaEF1 represses the expression of the epithelial markers by recruiting HDACs to chromatin. This observation allows us to translate our findings into clinical application. To test whether the transcriptional repression by DeltaEF1 underlines the mechanism responsible for erlotinib resistance, erlotinib-resistant lines were treated with an HDAC inhibitor (SAHA) followed by erlotinib. This resulted in a synergistic effect and substantial increase in sensitivity to erlotinib in the resistant cell lines. Thus, combining an HDAC inhibitor with erlotinib represents a novel promising pharmacologic strategy for reversing resistance to erlotinib in HNSCC patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic lung diseases (CLDs) are a considerable source of morbidity and mortality and are thought to arise from dysregulation of normal wound healing processes. An aggressive, feature of many CLDs is pulmonary fibrosis (PF) and is characterized by excess deposition of extracellular matrix (ECM) proteins from myofibroblasts in airways. However, factors regulating myofibroblast biology are incompletely understood. Proteins in the cadherin family contribute epithelial to mesenchymal transition (EMT), a suggested source of myofibroblasts. Cadherin 11 (CDH11) contributes to developmental and pathologic processes that parallel those seen in PF and EMT. Utilizing Cdh11 knockout (Cdh11 -/-) mice, the goal of this study was to characterize the contribution of CDH11 in the bleomycin model of PF and assess the feasibility of treating established PF. We demonstrate CDH11 in macrophages and airway epithelial cells undergoing EMT in lungs of mice given bleomycin and patients with PF. Endpoints consistent with PF including ECM production and myofibroblast formation are reduced in CDH11-targeted mice given bleomycin. Findings suggesting mechanisms of CDH11-dependent fibrosis include the regulation of the profibrotic mediator TGF-â in alveolar macrophages and CDH11-mediated EMT. The results of this study propose CDH11 as a novel drug target for PF. In addition, another CLD, chronic obstructive pulmonary disease (COPD), is characterized by airway inflammation and destruction. Adenosine, a nucleoside signaling molecule generated in response to cell stress is upregulated in patients with COPD and is suggested to contribute to its pathogenesis. An established model of adenosine-mediated lung injury exhibiting features of COPD is the Ada -/- mouse. Previous studies in our lab suggest features of the Ada -/- phenotype may be secondary to adenosine-dependent expression of osteopontin (OPN). OPN is a protein implicated in a variety of human pathology, but its role in COPD has not been examined. To address this, Ada/Opn -/- mice were generated and endpoints consistent with COPD were examined in parallel with Ada -/- mice. Results demonstrate OPN-mediated pulmonary neutrophilia and airway destruction in Ada -/- mice. Furthermore, patients with COPD exhibit increased OPN in airways which correlate with clinical airway obstruction. These results suggest OPN represents a novel biomarker or therapeutic target for the management of patients with COPD. The importance of findings in this thesis is highlighted by the fact that no pharmacologic interventions have been shown to interfere with disease progression or improve survival rates in patients with COPD or PF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular milieu is rich in growth factors that drive tumor progression,but the mechanisms that govern tumor cell sensitivity to those ligands have notbeen fully defined. In this study, we address this question in mice that developmetastatic lung adenocarcinomas through the suppression of the microRNA-200 (miR-200) family. Cancer-associated fibroblasts (CAF) enhance tumorgrowth and invasion by secreting VEGF-A that binds to VEGFR1, a processrequired for tumor growth and metastasis in mice and correlated with a poorprognosis in lung adenocarcinoma patients. In this study, we discovered thatmiR-200 blocked CAF-induced tumor cell invasion by directly targetingVEGFR1 in tumor cells. In the context of previous studies, our findings suggestthat the miR-200 family is a point of convergence for diverse biologic processesthat regulate tumor cell proliferation, invasion, and metastasis; its target genesixdrive epithelial-to-mesenchymal transition (ZEB1 and ZEB2) and promotesensitivity to a potent tumor growth factor emanating from the microenvironment(VEGFR1). Clinical trials should focus not only on the role of VEGFR1 inangiogenesis but also on the expression and activation of VEGFR1 in tumorcells by stromal sources of VEGF-A in the tumor microenvironment as a targetfor metastasis prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine is a purinergic signaling molecule that regulates various aspects of inflammation and has been implicated in the pathogenesis of chronic lung diseases. Previous studies have demonstrated that adenosine up-regulates IL-6 production through the engagement of the A2B adenosine receptor in various cell types, including alveolar macrophages. IL-6 is elevated in mouse models and humans with chronic lung disease, suggesting a potential role in disease progression. Furthermore, chronic elevation of adenosine in the lungs of adenosine deaminase deficient (Ada-/-) mice leads to the development of pulmonary inflammation, alveolar destruction, and fibrosis, in conjunction with IL-6 elevation. Thus, it was hypothesized that IL-6 contributes to pulmonary inflammation and fibrosis in this model. To test this hypothesis, Ada/IL-6 double knockout mice (Ada/IL-6-/-) were generated to assess the consequences of genetically removing IL-6 on adenosine-dependent pulmonary injury. Ada/IL-6-/- mice exhibited a significant reduction in inflammation, alveolar destruction, and pulmonary fibrosis. Next, Ada-/- mice were treated systematically with IL-6 neutralizing antibodies to test the efficacy of blocking IL-6 on chronic lung disease. These treatments were associated with decreased pulmonary inflammation, alveolar destruction, and fibrosis. To determine the role of IL-6 in a second model of pulmonary fibrosis, wild type mice and IL-6-/- mice were subjected to intraperitoneal injections of bleomycin twice a week for four weeks. Results demonstrated that IL-6-/- mice developed reduced pulmonary fibrosis. To examine a therapeutic approach in this model, wild type mice exposed to bleomycin were treated with IL-6 neutralizing antibodies. Similar results were observed as with Ada-/- mice, namely diminished pulmonary inflammation and fibrosis. In both models, elevations in IL-6 were associated with increased phosphorylated STAT-3 in the nuclei of numerous cell types in the airways, including type II alveolar epithelial cells (AEC). Genetic removal and neutralization of IL-6 in both models was associated with decreased STAT-3 activation in type II AEC. The mechanism of activation in these cells that lack the membrane bound IL-6Ra suggests IL-6 trans-signaling may play a role in regulating fibrosis. Characterization of this mechanism demonstrated that the soluble IL-6Ra (sIL-6Ra) is upregulated in both models during chronic conditions. In vitro studies in MLE-12 alveolar epithelial cells confirmed that IL-6, in combination with the sIL-6Ra, activates STAT-3 and TWIST in association with enhancement of epithelial-to-mesenchymal transition, which can contribute to fibrosis. Similarly, patients with idiopathic pulmonary fibrosis demonstrated a similar pattern of increased IL-6 expression, STAT-3 activation, and sIL-6Ra increases. These findings demonstrate that adenosine-dependent elevations in IL-6 contribute to the development and progression of pulmonary inflammation and fibrosis. The implications from these studies are that adenosine and/or IL-6 neutralizing agents represent novel therapeutic targets for the treatment of pulmonary disorders where fibrosis is a detrimental component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progression of hormone responsive to hormone refractory prostate cancer poses a major clinical challenge in the successful treatment of prostate cancer. The hormone refractory prostate cancer cells exhibit resistance not only to castrate levels of testosterone, but also to other therapeutic modalities and hence become lethal. Currently, there is no effective treatment available for managing this cancer. These observations underscore the urgency to investigate mechanism(s) that contribute to the progression of hormone-responsive to hormone-refractory prostate cancer and to target them for improved clinical outcomes. Tissue transglutaminase (TG2) is a multifunctional pro-inflammatory protein involved in diverse physiological processes such as inflammation, tissue repair, and wound healing. Its expression is also implicated in pathological conditions such as cancer and fibrosis. Interestingly, we found that the androgen-independent prostate cancer cell lines, which lacked androgen receptor (AR) expression, contained high basal levels of tissue transglutaminase. Inversely, the cell lines that expressed androgen receptor lacked transglutaminase expression. This attracted our attention to investigate the possible role this protein may play in the progression of prostate cancer, especially in view of recent observations that its expression is linked with increased invasion, metastasis, and drug resistance in multiple cancer cell types. The results we obtained were rather surprising and revealed that stable expression of tissue transglutaminase in androgen-sensitive LNCaP prostate cancer cells rendered these cells independent of androgen for growth and survival by silencing the AR expression. The AR silencing in TG2 expressing cells (TG2-infected LNCaP and PC-3 cells) was due to TG2-induced activation of the inflammatory nuclear transcription factor-kB (NF-kB). Thus, TG2 induced NF-kB was found to directly bind to the AR promoter. Importantly, TG2 protein was specifically recruited to the AR promoter in complex with the p65 subunit of NF-kB. Moreover, TG2 expressing LNCaP and PC-3 cells exhibited epithelial-to-mesenchymal transition, as evidenced by gain of mesenchymal (such as fibronectin, vimentin, etc.) and loss of epithelial markers (such as E-cadherin, b-catenin). Taken together, these results suggested a new function for TG2 and revealed a novel mechanism that is responsible for the progression of prostate cancer to the aggressive hormone-refractory phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms that mediate endometrial cancer invasion and metastasis remain poorly understood. This is a significant clinical problem, as there is no definitive cure for metastatic disease. The purinergic pathway’s generation of adenosine and its activation of the adenosine receptor A2B (A2BR) induces cell-cell adhesion to promote barrier function. This barrier function is known to be important in maintaining homeostasis during hypoxia, trauma, and sepsis. Loss of this epithelial barrier function provides a considerable advantage for carcinoma progression, as loss of cell-cell adhesions supports proliferation, aberrant signaling, epithelial-to-mesenchymal transition, invasion, and metastasis. The present work provides strong evidence that CD73-generated adenosine actively promotes cell-cell adhesion in carcinoma cells by filopodia-induced zippering. Adenosine-generating ecto-enzyme, CD73, was down-regulated in moderately- and poorly-differentiated, invasive, and metastatic endometrial carcinomas. CD73 expression and enzyme activity in normal endometrium and endometrial carcinomas was significantly correlated to the epithelial phenotype. Barrier function in normal epithelial cells of the endometrium was dependent on stress-induced generation of adenosine by CD73 and adenosine’s activation of A2BR. This same mechanism inhibited endometrial carcinoma cell migration and invasion. Finally, adenosine’s activation of A2BR induced the formation of filopodia that promoted the re-forming of cell-cell adhesions in carcinoma cells. Overall, these studies identified purinergic pathway-induced filopodia to be a novel mechanism of adenosine’s barrier function and a mechanism that has to be avoided/down-regulated by endometrial carcinoma cells attempting to lose attachment with their neighboring cells. These results provide insight into the molecular mechanisms of endometrial cancer invasion. In addition, because loss of cell-cell adhesions has been closely linked to therapy resistance in cancer, these results provide a rational clinical strategy for the re-establishment of cell-cell adhesions to potentially increase therapeutic sensitivity. In contrast to other molecular mechanisms regulating cell-cell adhesions, the purinergic pathway is clinically druggable, with agonists and antagonists currently being tested in clinical trials of various diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is a rare but very aggressive form of locally advanced breast cancer (1-6% of total breast cancer patients in United States), with a 5-year overall survival rate of only 40.5%, compared with 85% of the non-IBC patients. So far, a unique molecular signature for IBC able to explain the dramatic differences in the tumor biology between IBC and non-IBC has not been identified. As immune cells in the tumor microenvironment plays an important role in regulating tumor progression, we hypothesized that tumor-associated dendritic cells (TADC) may be responsible for regulating the development of the aggressive characteristics of IBC. MiRNAs can be released into the extracellular space and mediate the intercellular communication by regulating target gene expression beyond their cells of origin. We hypothesized that miRNAs released by IBC cells can induce an increased activation status, secretion of pro-inflammatory cytokines and migration ability of TADC. In an in vitro model of IBC tumor microenvironment, we found that the co-cultured of the IBC cell line SUM-149 with immature dendritic cells (iDCSUM-149) induced a higher degree of activation and maturation of iDCSUM-149 upon stimulation with lipopolysaccharide (LPS) compared with iDCs co-cultured with the non-IBC cell line SUM-159 (iDCSUM-159), resulting in: increased expression of the costimulatory and activation markers; higher production of pro-inflammatory cytokines (TNF-a, IL-6); and 3) higher migratory ability. These differences were due to the exosome-mediated transfer of miR-19a and miR-146a from SUM-149 and SUM-159, respectively, to iDCs, causing the downregulation of the miR-19a target genes PTEN, SOCS-1 and the miR-146a target genes IRAK1, TRAF6. PTEN, SOCS-1 and IRAK1, TRAF6 are important negative and positive regulator of cytokine- and TLR-mediated activation/maturation signaling pathway in DCs. Increased levels of IL-6 induced the upregulation of miR-19a synthesis in SUM-149 cells that was associated with the induction of CD44+CD24-ALDH1+ cancer stem cells (CSCs) with epithelial-to-mesenchymal transition (EMT) characteristics. In conclusion, in IBC tumor microenvironment IL-6/miR-19a axis can represent a self-sustaining loop able to maintain a pro-inflammatory status of DCs, leading to the development of tumor cells with high metastatic potential (EMT CSCs) responsible of the poor prognosis in IBC patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is the most insidious form of locally advanced disease. Although rare and less than 2% of all breast cancer, IBC is responsible for up to 10% of all breast cancer deaths. Despite the name, very little is known about the role of inflammation or immune mediators in IBC. Therefore, we analyzed blood samples from IBC patients and non-IBC patients, as well as healthy donor controls to establish an IBC-specific profile of peripheral blood leukocyte phenotype and function of T cells and dendritic cells and serum inflammatory cytokines. Emerging evidence suggests that host factors in the microenviromement may interact with underlying IBC genetics to promote the aggressive nature of the tumor. An integral part of the metastatic process involves epithelial to mesenchymal transition (EMT) where primary breast cancer cells gain motility and stem cell-like features that allow distant seeding. Interestingly, the IBC consortium microarray data found no clear evidence for EMT in IBC tumor tissues. It is becoming increasingly evident that inflammatory factors can induce EMT. However, it is unknown if EMT-inducing soluble factors secreted by activated immune cells in the IBC microenvironment canπ account for the absence of EMT in studies of the tumor cells themselves. We hypothesized that soluble factors from immune cells are capable of inducing EMT in IBC. We tested the ability of immune conditioned media to induce EMT in IBC cells. We found that soluble factors from activated immune cells are able to induce the expression of EMT-related factors in IBC cells along with increased migration and invasion. Specifically, the pro-inflammatory cytokines TNF-α, IL-6 and TGF-β were able to induce EMT and blocking these factors in conditioned media abated the induction of EMT. Surprisingly, unique to IBC cells, this process was related to increased levels of E-cadherin expression and adhesion, reminiscent of the characteristic tightly packed tumor emboli seen in IBC samples. This data offers insight into the unique pathology of IBC by suggesting that tumor immune interactions in the tumor microenvironment contribute to the aggressive nature of IBC implying that immune induced inflammation can be a novel therapeutic target. Specifically, we showed that soluble factors secreted by activated immune cells are capable of inducing EMT in IBC cells and may mediate the persistent E-cadherin expression observed in IBC. This data suggests that immune mediated inflammation may contribute to the highly aggressive nature of IBC and represents a potential therapeutic target that warrants further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis is the ultimate cause for the majority of cancer-related deaths. The forkhead box transcription factor FOXC2 is known to be involved in regulating metastasis as well as a variety of developmental processes, including the formation of lymphatic and cardiovascular systems. Previous studies have shown that FOXC2 protein is localized either in the nucleus and/or in the cytoplasm of human breast tumor cells. This pattern of localization is similar to that of another forkhead family member, FOXO3a. Additionally, localization of FOXO3a is known to be differentially regulated by upstream kinase AKT. Therefore, I investigated whether FOXC2 localization could also be regulated by upstream kinases. Analysis of FOXC2 protein sequence revealed two potential phosphorylation sites for GSK-3β. Furthermore, inhibition of GSK-3βsignificantly reduces FOXC2 protein. In addition, exposure of HMLE Twist cells expressing endogenous FOXC2 to the GSK-3β inhibitor, TWS119, results in accumulation of FOXC2 protein in the cytoplasm with concomitant decrease in the nucleus in a time-dependent manner. Furthermore, continued treatment with TWS119 eventually induces epithelial morphology and decreased stem cell properties including sphere formation in these cells. Further characterization of FOXC2- GSK-3β interaction and the associated signaling cascade are necessary to determine the effect of FOXC2 phosphorylation by GSK-3β on EMT and metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p63, a p53 family member, is a transcription factor that has complex roles in cancer. This study focuses on the role of the ∆Np63α isoform in bladder cancer (BC). Epithelial – mesenchymal transition (EMT) is a physiological process that plays an important part in metastasis and drug resistance. At the molecular level, EMT is characterized by the loss of the epithelial marker E-cadherin, and the acquisition of the transcriptional repressors of E-cadherin (ZEB1, ZEB2, TWIST, SNAI1 and SNAI2). Recent publications highlight the role of microRNAs belonging to the miR-200 family and miR-205 in preventing EMT through suppression of ZEB1 and ZEB2. p53, the homologue of p63, is implicated in regulating EMT by modulating the expression of miR-200c; however, the mechanisms underlying miR-205 control remain unclear. Here we show that ∆Np63α regulates the transcription of miR-205 and controls EMT in human BC cells. We observed a strong correlation between the expression of ∆Np63α, miR-205 and E-cadherin in a panel of BC cell lines (n=28) and also in bladder primary tumors from a cohort of patients (n=98). A remarkably inverse correlation is observed between ∆Np63α and ZEB1/2 in cell lines. Stable knockdown (KD) ∆Np63α in UC6, an “epithelial” BC cell line, decreased the expression of miR-205 and induced ZEB1/2 expression, the effects that were reversed by expression of exogenous miR-205. Moreover, overexpressing ∆Np63α in UC3, a “messenchymal” BC cell line, brought about opposite results, an increase in miR-205 expression and a reduction in ZEB1/2 expression. Modulation of ∆Np63α expression resulted in a parallel change in the expression of miR-205 and miR-205 “host” gene (miR-205HG). Nuclear run-on and chromatin immunoprecipitation experiments demonstrated that ∆Np63α regulates the transcription of miR-205 through controlling the recruitment of RNA Polymerase II to the promoter of miR-205HG. Interestingly, high miR-205 expression correlated with poor clinical outcome in BC patients, consistent with our recent publication highlighting the enrichment of ∆Np63 in a lethal subset of muscle invasive BC. In summary, our data present the important roles of ∆Np63α in preventing EMT mediated by miR-205. Our study also identifies miR-205 as a potential molecular marker to predict clinical outcome in BC patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancer (CRC) develops from multiple progressive modifications of normal intestinal epithelium into adenocarcinoma. Loss of cell polarity has been implicated as an early event in this process, but the molecular players involved are not well known. NHERF1 (Na+/H+ Exchanger Regulatory Factor 1) is an adaptor protein with apical membrane localization in polarized epithelia. In this study, we tested our hypothesis that NHERF1 plays a role in CRC. We examined surgical CRC resection specimens for changes in NHERF1 expression, and modeled these changes in two- and three-dimensional (2D and 3D) Caco-2 CRC cell systems. NHERF1 had significant alterations from normal to adenoma and carcinoma transitions (2=38.5, d.f.=4, P<0.001), displaying apical membrane localization in normal tissue but loss of expression in adenoma and ectopic overexpression in carcinoma. In Caco-2 cell models, NHERF1 depletion induced epithelial-mesenchymal-transition in 2D cell monolayers and disruption of apical-basal polarity in 3D cyst system. The mesenchymal phenotype of NHERF1-depleted cells was fully restored by re-expression of NHERF1 at the apical membrane. Cytoplasmic and nuclear NHERF1 re-expression not only failed to restore the epithelial phenotype but led to more aggressive phenotypes. Our findings suggest that membrane NHERF1 is an important regulator of epithelial morphogenesis, and that changes in NHERF1 expression correlate with CRC progression. NHERF1 loss and ectopic expression that induce massive disruption of epithelial cell polarity may, thereby, mark important steps in CRC development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin E is the regulatory subunit of the cyclin E/CDK2 complex that mediates the G1-S phase transition. N-terminal cleavage of cyclin E by elastase in breast cancer generates two low molecular weight (LMW) isoforms that exhibit both enhanced kinase activity and resistance to p21 and p27 inhibition compared to fulllength cyclin E. Clinically, approximately 27% of breast cancer patients overexpress LMW-E and associate with poor survival. Therefore, we hypothesize that LMW-E disrupts normal mammary acinar morphogenesis and serves as the initial route into breast tumor development. We first demonstrate that LMW-E overexpression in non-tumorigenic hMECs is sufficient to induce tumor formation in athymic mice significantly more than overexpression of full-length cyclin E and requires CDK2- associated kinase activity. Further in vivo passaging of these tumors augments LMW-E expression and tumorigenic potential. When subjected to acinar morphogenesis in vitro, LMW-E mediates significant morphological disruption by generating hyperproliferative and multi-acinar complexes. Proteomic analysis of patient tissues and tumor cells with high LMW-E expression reveals that the activation of the b-Raf-ERK1/2-mTOR pathway in concert with high LMW-E expression predicts poor patient survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (b-raf inhibitor) effectively prevented aberrant acinar formation in LMW-E-expressing cells by inducing the G1/S cell cycle arrest. In addition, the LMW-E-expressing tumor cells exhibit phenotypes characteristic of the EMT and enhanced cellular invasiveness. These tumor cells also enrich for cells with CSC phenotypes such as increased CD44hi/CD24lo population, enhanced mammosphere formation, and upregulation of ALDH expression and enzymatic activity. Furthermore, the CD44hi/CD24lo population also shows positive correlation with LMW-E expression in both the tumor cell line model and breast cancer patient samples (p<0.0001 & p=0.0435, respectively). Combination treatment using doxorubicin and salinomycin demonstrates synergistic cytotoxic effects in cells with LMW-E expression but not in those with full-length cyclin E expression. Finally, ProtoArray microarray identifies Hbo1 as a novel substrate of the cyclin E/CDK2 complex and its overexpression results in enrichment for CSCs. Collectively, these data emphasize the strong oncogenic potential of LMW-E in mammary tumorigenesis and suggest possible therapeutic strategies to treat breast cancer patients with high LMW-E expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is a devastating disease with very poor prognosis. The design of better treatments for patients would be greatly aided by mouse models that closely resemble the human disease. The most common type of human lung cancer is adenocarcinoma with frequent metastasis. Unfortunately, current models for this tumor are inadequate due to the absence of metastasis. Based on the molecular findings in human lung cancer and metastatic potential of osteosarcomas in mutant p53 mouse models, I hypothesized that mice with both K-ras and p53 missense mutations might develop metastatic lung adenocarcinomas. Therefore, I incorporated both K-rasLA1 and p53RI72HΔg alleles into mouse lung cells to establish a more faithful model for human lung adenocarcinoma and for translational and mechanistic studies. Mice with both mutations ( K-rasLA1/+ p53R172HΔg/+) developed advanced lung adenocarcinomas with similar histopathology to human tumors. These lung adenocarcinomas were highly aggressive and metastasized to multiple intrathoracic and extrathoracic sites in a pattern similar to that seen in lung cancer patients. This mouse model also showed gender differences in cancer related death and developed pleural mesotheliomas in 23.2% of them. In a preclinical study, the new drug Erlotinib (Tarceva) decreased the number and size of lung lesions in this model. These data demonstrate that this mouse model most closely mimics human metastatic lung adenocarcinoma and provides an invaluable system for translational studies. ^ To screen for important genes for metastasis, gene expression profiles of primary lung adenocarcinomas and metastases were analyzed. Microarray data showed that these two groups were segregated in gene expression and had 79 highly differentially expressed genes (more than 2.5 fold changes and p<0.001). Microarray data of Bub1b, Vimentin and CCAM1 were validated in tumors by quantitative real-time PCR (QPCR). Bub1b , a mitotic checkpoint gene, was overexpressed in metastases and this correlated with more chromosomal abnormalities in metastatic cells. Vimentin, a marker of epithelial-mesenchymal transition (EMT), was also highly expressed in metastases. Interestingly, Twist, a key EMT inducer, was also highly upregulated in metastases by QPCR, and this significantly correlated with the overexpression of Vimentin in the same tumors. These data suggest EMT occurs in lung adenocarcinomas and is a key mechanism for the development of metastasis in K-ras LA1/+ p53R172HΔg/+ mice. Thus, this mouse model provides a unique system to further probe the molecular basis of metastatic lung cancer.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transducer and activator of transcription 3 (Stat3) is a signaling molecule that transduces signal from cell surface receptors, itself translocates into the nucleus, binds to consensus promoter sequences and activates gene transcription. Here, we showed that Stat3 is constitutively activated in both premalignant tumors (papillomas) and squamous cell carcinomas of mouse skin that is induced by topical treatment with an initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by a tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Additional data demonstrated that epidermal growth factor signaling contributes to the activation of Stat3 in this model. Using mice where Stat3 function is abrogated in keratinocytes via the Cre-LoxP system (K5Cre.Stat3 flox/flox), we demonstrated that Stat3 is required for de novo carcinogenesis since Stat3 deficiency leads to a complete abrogation of skin tumor development induced by DMBA and TPA. We subsequently showed that Stat3 plays a role in both the initiation and promotion stages of carcinogenesis. During initiation, Stat3 functions as an anti-apoptotic molecule for maintaining the survival of DNA-damaged keratinocyte stem cells. During promotion, Stat3 functions as a critical regulator for G1 to S phase cell cycle progression to confer selective clonal expansion of initiated cells into papillomas. On the other hand, using transgenic mice over-expressing a constitutively dimerized form of Stat3 (Stat3C) in keratinocytes (K5.Stat3C), we revealed a role for Stat3 in tumor progression. After treatment with DMBA and TPA, K5.Stat3C transgenic mice developed skin tumors with a shorter latency when 100% bypassed the premalignant stage and became carcinoma in situ. Histological and immunohistochemical analysis revealed these tumors as highly vascularized and poorly differentiated. More strikingly, these tumors exhibited invasion into surrounding mesenchymal tissue, some of which metastasized into lung. The tumor-mesenchymal front was characterized by partial loss of E-cadherin and elevation of vimentin, markers characterizing epithelial-mesenchymal transition. On the other hand, inhibition of Stat3 via a decoy oligonucleotide led to a significant reduction of tumor size in approximately 50% of all papillomas tested. In conclusion, we demonstrated that Stat3 plays a critical in all three stages (initiation, promotion and progression) of skin carcinogenesis, and it may potentially become a good target for cancer prevention and anti-cancer therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is an aggressive, high grade brain tumor. Microarray studies have shown a subset of GBMs with a mesenchymal gene signature. This subset is associated with poor clinical outcome and resistance to treatment. To establish the molecular drivers of this mesenchymal transition, we correlated transcription factor expression to the mesenchymal signature and identified transcriptional co-activator with PDZ-binding motif (TAZ) to be highly associated with the mesenchymal shift. High TAZ expression correlated with worse clinical outcome and higher grade. These data led to the hypothesis that TAZ is critical to the mesenchymal transition and aggressive clinical behavior seen in GBM. We investigated the expression of TAZ, its binding partner TEAD, and the mesenchymal marker FN1 in human gliomas. Western analyses demonstrated increased expression of TAZ, TEAD4, and FN1 in GBM relative to lower grade gliomas. We also identified CpG islands in the TAZ promoter that are methylated in most lower grade gliomas, but not in GBMs. TAZ-methylated glioma stem cell (GSC) lines treated with a demethylation agent showed an increase in mRNA and protein TAZ expression; therefore, methylation may be another novel way TAZ is regulated since TAZ is epigenetically silenced in tumors with a better clinical outcome. To further characterize the role of TAZ in gliomagenesis, we stably silenced or over-expressed TAZ in GSCs. Silencing of TAZ decreased invasion, self-renewal, mesenchymal protein expression, and tumor-initiating capacity. Over-expression of TAZ led to an increase in invasion, mesenchymal protein expression, mesenchymal differentiation, and tumor-initiating ability. These actions are dependent on TAZ interacting with TEAD since all these effects were abrogated with TAZ could not bind to TEAD. We also show that TAZ and TEAD directly bind to mesenchymal gene promoters. Thus, TAZ-TEAD interaction is critically important in the mesenchymal shift and in the aggressive clinical behavior of GBM. We identified TAZ as a regulator of the mesenchymal transition in gliomas. TAZ could be used as a biomarker to both estimate prognosis and stratify patients into clinically relevant subgroups. Since mesenchymal transition is correlated to tumor aggressiveness, strategies to target and inhibit TAZ-TEAD and the downstream gene targets may be warranted in alternative treatment.