26 resultados para conserved loci

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-point linkage group comprised of loci coding for adenosine deaminase (ADA), glucose-6-phosphate dehydrogenase (G6PDH), and 6-phospho-gluconate dehydrogenase (6PGD) is described in fish of the genus Xiphophorus (Poeciliidae). The alleles at loci in this group were shown to assort independently from the alleles at three other loci--isocitrate dehydrogenase 1 and 2, and glyceraldehyde-3-phosphate dehydrogenase 1. Alleles at the latter three loci also assort independently from each other. Data were obtained by observing the segregation of electrophoretically variant alleles in reciprocal backcross hybrids derived from crosses between either X. helleri guentheri or X. h. strigatus and X. maculatus. The linkage component of chi2 was significant (less than 0.01) in all crosses, indicating that the linkage group is conserved in all populations of both species of Xiphophorus examined. While data from X. h. guentheri backcrosses indicate the linkage relationship ADA--6%--G6PDH--24%--6PGD, and ADA--29%--6PGD (30% when corrected for double crossovers), data from backcrosses involving strigatus, while supporting the same gene order, yielded significantly different recombination frequencies. The likelihood of the difference being due to an inversion could not be separated from the possibility of a sex effect on recombination in the present data. The linkage of 6PGD and G6PDH has been shown to exist in species of at least three classes of vertebrates, indicating the possibility of evolutionary conservation of this linkage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of the number of heterozygous loci in two randomly chosen gametes or in a random diploid zygote provides information regarding the nonrandom association of alleles among different genetic loci. Two alternative statistics may be employed for detection of nonrandom association of genes of different loci when observations are made on these distributions: observed variance of the number of heterozygous loci (s2k) and a goodness-of-fit criterion (X2) to contrast the observed distribution with that expected under the hypothesis of random association of genes. It is shown, by simulation, that s2k is statistically more efficient than X2 to detect a given extent of nonrandom association. Asymptotic normality of s2k is justified, and X2 is shown to follow a chi-square (chi 2) distribution with partial loss of degrees of freedom arising because of estimation of parameters from the marginal gene frequency data. Whenever direct evaluations of linkage disequilibrium values are possible, tests based on maximum likelihood estimators of linkage disequilibria require a smaller sample size (number of zygotes or gametes) to detect a given level of nonrandom association in comparison with that required if such tests are conducted on the basis of s2k. Summarization of multilocus genotype (or haplotype) data, into the different number of heterozygous loci classes, thus, amounts to appreciable loss of information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrophoretic variants at four additional enzyme loci--two esterases (Est-2, Est-3), retinal lactate dehydrogenase (LDH-1) and mannose phosphate isomerase (MPI)--among three species and four subspecies of fish of the genus Xiphophorus were observed. Electrophoretic patterns in F1 hybrid heterozygotes confirmed the monomeric structures of MPI and the esterase and the tetrametric structure of LDH in these fishes. Variant alleles of all four loci displayed normal Mendelian segregation in backcross and F2 hybrids. Recombination data from backcross hybrids mapped with Haldane's mapping function indicate the four loci to be linked as Est-2--0.43--Est3--0.26--LDH-1--0.19--MPI. Significant interference was detected and apparently concentrated in the Est-3 to MPI region. No significant sex-specific differences in recombination were observed. This group (designated linkage group II) was shown to assort independently from the three loci of linkage group I (adenosine deaminase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) and from glyceraldehyde-3-phosphate dehydrogenase and two isocitrate dehydrogenase loci. Evidence for conservation of the linkage group, at least in part, in other vertebrate species is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcineurin is a widely expressed and highly conserved Ser/Thr phosphatase. Calcineurin is inhibited by the immunosuppressant drug cyclosporine A (CsA) or tacrolimus (FK506). The critical role of CsA/FK506 as an immunosuppressant following transplantation surgery provides a strong incentive to understand the phosphatase calcineurin. Here we uncover a novel regulatory pathway for cyclic AMP (cAMP) signaling by the phosphatase calcineurin which is also evolutionarily conserved in Caenorhabditis elegans. We found that calcineurin binds directly to and inhibits the proteosomal degradation of cAMP-hydrolyzing phosphodiesterase 4D (PDE4D). We show that ubiquitin conjugation and proteosomal degradation of PDE4D are controlled by a cullin 1-containing E(3) ubiquitin ligase complex upon dual phosphorylation by casein kinase 1 (CK1) and glycogen synthase kinase 3beta (GSK3beta) in a phosphodegron motif. Our findings identify a novel signaling process governing G-protein-coupled cAMP signal transduction-opposing actions of the phosphatase calcineurin and the CK1/GSK3beta protein kinases on the phosphodegron-dependent degradation of PDE4D. This novel signaling system also provides unique functional insights into the complications elicited by CsA in transplant patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divergent relatives of the Hsp70 protein chaperone such as the Hsp110 and Grp170 families have been recognized for some time, yet their biochemical roles remained elusive. Recent work has revealed that these "atypical" Hsp70s exist in stable complexes with classic Hsp70s where they exert a powerful nucleotide-exchange activity that synergizes with Hsp40/DnaJ-type cochaperones to dramatically accelerate Hsp70 nucleotide cycling. This represents a novel evolutionary transition from an independent protein-folding chaperone to what appears to be a dedicated cochaperone. Contributions of the atypical Hsp70s to established cellular roles for Hsp70 now must be deciphered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To identify systemic sclerosis (SSc) susceptibility loci via a genome-wide association study. METHODS: A genome-wide association study was performed in 137 patients with SSc and 564 controls from Korea using the Affymetrix Human SNP Array 5.0. After fine-mapping studies, the results were replicated in 1,107 SSc patients and 2,747 controls from a US Caucasian population. RESULTS: The single-nucleotide polymorphisms (SNPs) (rs3128930, rs7763822, rs7764491, rs3117230, and rs3128965) of HLA-DPB1 and DPB2 on chromosome 6 formed a distinctive peak with log P values for association with SSc susceptibility (P=8.16x10(-13)). Subtyping analysis of HLA-DPB1 showed that DPB1*1301 (P=7.61x10(-8)) and DPB1*0901 (P=2.55x10(-5)) were the subtypes most susceptible to SSc in Korean subjects. In US Caucasians, 2 pairs of SNPs, rs7763822/rs7764491 and rs3117230/rs3128965, showed strong association with SSc patients who had either circulating anti-DNA topoisomerase I (P=7.58x10(-17)/4.84x10(-16)) or anticentromere autoantibodies (P=1.12x10(-3)/3.2x10(-5)), respectively. CONCLUSION: The results of our genome-wide association study in Korean subjects indicate that the region of HLA-DPB1 and DPB2 contains the loci most susceptible to SSc in a Korean population. The confirmatory studies in US Caucasians indicate that specific SNPs of HLA-DPB1 and/or DPB2 are strongly associated with US Caucasian patients with SSc who are positive for anti-DNA topoisomerase I or anticentromere autoantibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of human-rodent somatic cell hybrids were investigated by Southern blot analysis for the presence or absence of twenty-six molecular markers and three isozyme loci from human chromosome 19. Based on the co-retention of these markers in the various independent hybrid clones containing portions of human chromosome 19 and on pulsed field mapping, chromosome 19 is divided into twenty ordered regions. The most likely marker order for the chromosome is: (LDLR, C3)-(cen-MANNB)-D19S7-PEPD-D19S9-GPI-TGF$ \beta$-(CYP2A, NCA, CGM2, BCKAD)-PSG1a-(D19S8, XRCC1)-(D19S19, ATP1A3)-(D19S37, APOC2)-CKMM-ERCC2-ERCC1-(D19S62, D19S51)-D19S6-D19S50-D19S22-(CGB, FTL)-qter.^ The region of 19q between the proximal marker D19S7 and the distal gene coding for the beta subunit of chorionic gonadotropin (CGB) is about 37 Mb in size and covers about 37 cM genetic distance. The ration of genetic to physical distance on 19q is therefore very close to the genomic average OF 1 cM/Mb. Estimates of physical distances for intervals between chromosome 19 markers were calculated using a mapping function which estimates distances based on the number of breaks in hybrid clone panels. The consensus genetic distances between individual markers (established at HBM10) were compared to these estimates of physical distances. The close agreement between the two estimates suggested that spontaneously broken hybrids are as appropriate for this type of study as radiation hybrids.^ All three DNA repair genes located on chromosome 19 were found to have homologues on Chinese hamster chromosome 9, which is hemizygous in CHO cells, providing an explanation for the apparent ease with which mutations at these loci were identified in CHO cells. Homologues of CKMM and TGF$\beta$ (from human chromosome 19q) and a mini-satellite DNA specific to the distal region of human chromosome 19q were also mapped to Chinese hamster 9. Markers from 19p did not map to this hamster chromosome. Thus the q-arm of chromosome 19, at least between the genes PEPD and ERCC1, appears to be a linkage group which is conserved intact between humans and Chinese hamsters. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I studied the apolipoprotein (apo) B 3$\sp\prime$ variable number tandem repeat (VNTR) and did computer simulations of the stepwise mutation model to address four questions: (1) How did the apo B VNTR originate? (2) What is the mutational mechanism of repeat number change at the apo B VNTR? (3) To what extent are population and molecular level events responsible for the determination of the contemporary apo B allele frequency distribution? (4) Can VNTR allele frequency distributions be explained by a simple and conservative mutation-drift model? I used three general approaches to address these questions: (1) I characterized the apo B VNTR region in non-human primate species; (2) I constructed haplotypes of polymorphic markers flanking the apo B VNTR in a sample of individuals from Lorrain, France and studied the associations between the flanking-marker haplotypes and apo B VNTR size; (3) I did computer simulations of the one-step stepwise mutation model and compared the results to real data in terms of four allele frequency distribution characteristics.^ The results of this work have allowed me to conclude that the apo B VNTR originated after an initial duplication of a sequence which is still present as a single copy sequence in New World monkey species. I conclude that this locus did not originate by the transposition of an array of repeats from somewhere else in the genome. It is unlikely that recombination is the primary mutational mechanism. Furthermore, the clustered nature of these associations implicates a stepwise mutational mechanism. From the high frequencies of certain haplotype-allele size combinations, it is evident that population level events have also been important in the determination of the apo B VNTR allele frequency distribution. Results from computer simulations of the one-step stepwise mutation model have allowed me to conclude that bimodal and multimodal allele frequency distributions are not unexpected at loci evolving via stepwise mutation mechanisms. Short tandem repeat loci fit the stepwise mutation model best, followed by microsatellite loci. I therefore conclude that there are differences in the mutational mechanisms of VNTR loci as classed by repeat unit size. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular and cytogenetic analyses of human glioblastomas have revealed frequent genetic alterations, including major deletions in chromosomes 9, 10, and 17, suggesting the presence of glioma-associated tumor suppressor genes on these chromosomes. To examine this hypothesis, copies of chromosomes 2, 4, and 10 derived from a human fibroblast cell line were independently introduced into a human glioma cell line, U251, by microcell-mediated chromosomal transfer. Successful transfer of chromosomes in each case was confirmed by resistance to the drug G418, indicating the presence of the neomycin-resistance gene previously integrated into each transferred chromosome. The presence of novel chromosomes and or chromosomal fragments was also demonstrated by molecular and karyotypic analyses. The hybrid clones containing either a novel chromosome 4 or chromosome 10 displayed suppression of the tumorigenic phenotype in vivo and suppression of the transformed phenotype in vitro, while cells containing a transferred chromosome 2 failed to alter their tumorigenic phenotype. The hybrid cells containing chromosome 4 or 10 exhibited a significant decrease in their saturation density, altered cellular morphology at high cell density, but only a slight decrease in their exponential growth rate. A dramatic decrease was observed in growth of cells with chromosome 4 or 10 in soft agarose, with the number and size of the colonies being greatly reduced, compared to the parental or chromosome 2 containing cells. The introduction of chromosome 4 or 10 also completely suppressed tumor formation in nude mice. These studies indicate that chromosome 10, as hypothesized, and chromosome 4, a novel finding for gliomas, harbor tumor suppressor loci that may be directly involved in the initiation or progression of normal glial precursors to human glioblastoma multiforme. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable number of tandem repeats (VNTR) are genetic loci at which short sequence motifs are found repeated different numbers of times among chromosomes. To explore the potential utility of VNTR loci in evolutionary studies, I have conducted a series of studies to address the following questions: (1) What are the population genetic properties of these loci? (2) What are the mutational mechanisms of repeat number change at these loci? (3) Can DNA profiles be used to measure the relatedness between a pair of individuals? (4) Can DNA fingerprint be used to measure the relatedness between populations in evolutionary studies? (5) Can microsatellite and short tandem repeat (STR) loci which mutate stepwisely be used in evolutionary analyses?^ A large number of VNTR loci typed in many populations were studied by means of statistical methods developed recently. The results of this work indicate that there is no significant departure from Hardy-Weinberg expectation (HWE) at VNTR loci in most of the human populations examined, and the departure from HWE in some VNTR loci are not solely caused by the presence of population sub-structure.^ A statistical procedure is developed to investigate the mutational mechanisms of VNTR loci by studying the allele frequency distributions of these loci. Comparisons of frequency distribution data on several hundreds VNTR loci with the predictions of two mutation models demonstrated that there are differences among VNTR loci grouped by repeat unit sizes.^ By extending the ITO method, I derived the distribution of the number of shared bands between individuals with any kinship relationship. A maximum likelihood estimation procedure is proposed to estimate the relatedness between individuals from the observed number of shared bands between them.^ It was believed that classical measures of genetic distance are not applicable to analysis of DNA fingerprints which reveal many minisatellite loci simultaneously in the genome, because the information regarding underlying alleles and loci is not available. I proposed a new measure of genetic distance based on band sharing between individuals that is applicable to DNA fingerprint data.^ To address the concern that microsatellite and STR loci may not be useful for evolutionary studies because of the convergent nature of their mutation mechanisms, by a theoretical study as well as by computer simulation, I conclude that the possible bias caused by the convergent mutations can be corrected, and a novel measure of genetic distance that makes the correction is suggested. In summary, I conclude that hypervariable VNTR loci are useful in evolutionary studies of closely related populations or species, especially in the study of human evolution and the history of geographic dispersal of Homo sapiens. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the evolutionary relationship between human chromosome 16p12-p13 and mouse chromosomes was investigated by determining the order of marker loci in the region and then identifying the chromosomal locations of the homologous loci in mice. Eighteen genes from human 16 were mapped to fifteen subchromosomal regions by a variety of mapping approaches.^ Thirteen of the genes were mapped in the mouse. Linkage analysis with backcross mice and segregation analysis in a mouse - Chinese Hamster Ovary (CHO) somatic cell hybrid panel informative for different regions of mouse genome were used. The results assigned the thirteen genes to three different mouse chromosomes.^ A group of six genes on mouse 16 was found to be closely linked to Scid. The order of Myh11 and Mrp remains ambiguous since no recombination was detected in backcross analysis. Their relative position in human is also uncertain since they were shown to be very close to each other. For the other mouse loci, an unambiguous gene order could be determined and was found to be identical to that in human. Therefore, they comprise a new conserved linkage group between the two species. The orientation of the group was inverted relative to the centromeres, i.e. the proximal loci in one species become distal in another. The size of the group was estimated to be from 4.4 to 8 Mb and 10 to 32 cM in human. In mouse, it was about 21 cM in the backcross analysis. The two boundaries of the conserved linkage were defined within a 1 Mb range. It is now possible to predict the locations of mouse homologs for some human disease genes based on their locations on human 16p.^ The six human 16p genes that map to MMU7 showed a different gene order in mouse than in human. No recombination was found between Crym and Umod while Crym was distal to D16S79A and proximal to D16S92. The location of Stp and Cdr2 with respect to the above four loci was not determined since they were not mapped in the same set of backcross mice. These genes greatly expanded an existing conserved synteny group between the human 16p12-p13 region and the MMU7. It now consists of eleven loci that span a region of probably more than 10 Mb in human. The gene order derived from this study provided further evidence for chromosomal rearrangements within the conserved synteny. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial step in coronavirus-mouse hepatitis virus (MHV) replication is the synthesis of negative strand RNA from a positive strand genomic RNA template. Our approach to studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the protein(s) which recognizes these signals at the 3$\sp\prime$ end of genomic RNA of MHV. To determine whether host cellular and/or virus-specific proteins interact with the 3$\sp\prime$ end of the coronavirus genome, an RNase T$\sb1$ protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from either mock- or MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. A conserved 11 nucleotide sequence UGAAUGAAGUU at nucleotide positions 36 to 26 from the 3$\sp\prime$ end of genomic RNA was identified to be responsible for the specific binding of host proteins, by using a series of RNA probes with deletions and mutations in this region. The RNA probe containing the 11 nucleotide sequence bound approximately four host cellular proteins with a highly labeled 120 kDa and three minor species with sizes of 103, 81 and 55 kDa, assayed by UV-induced covalent cross-linking. Mutation of the 11 nucleotide motif strongly inhibited cellular protein binding, and decreased the amount of the 103 and 81 kDa proteins in the complex to undetectable levels and strongly reduced the binding of the 120 kDa protein. Less extensive mutations within this 11 nucleotide motif resulted in variable decreases in RNA-protein complex formation depending on each probe tested. The RNA-protein complexes observed with cytoplasmic extracts from MHV-JHM-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were indistinguishable to those observed with extracts from uninfected cells.^ To investigate the possible role of this 3$\sp\prime$ protein binding element in viral RNA replication in vivo, defective interfering RNA molecules with complete or partial mutations of the 11 nucleotide conserved sequence were transcribed in vitro, transfected to host 17Cl-1 cells in the presence of helper virus MHV-JHM and analyzed by agarose gel electrophoresis, competitive RT-PCR and direct sequencing of the RT-PCR products. Both negative strand synthesis and positive strand replication of DI RNA were affected by mutation that disrupts RNA-protein complex formation, even though the 11 mutated nucleotides were converted to wild type sequence, presumably by recombination with helper virus. Kinetic analysis indicated that recombination between DI RNA and helper virus occurred 5.5 to 7.5 hours post infection when replication of positive strand DI RNA was barely observed. Replication of positive strand DI RNAs carrying partial mutations within the 11 nucleotide motif was dependent upon recombination events after transfection. Replication was strongly inhibited when reversion to wild type sequence did not occur, and after recombination, reached similar levels as wild type DI RNA. A DI RNA with mutation upstream of the protein binding motif replicated as efficiently as wild type without undergoing recombination. Thus the conserved 11 nucleotide host protein binding motif appears to play an important role in viral RNA replication. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy involving the thoracic cavity and chemotherapy with the drug bleomycin are both dose limited by the development of pulmonary fibrosis. From evidence that there is variation in the population in susceptibility to pulmonary fibrosis, and animal data, it was hypothesized that individual variation in susceptibility to bleomycin-induced, or radiation-induced, pulmonary fibrosis is, in part, genetically controlled. In this thesis a three generation mouse genetic model of C57BL/6J (fibrosis prone) and C3Hf/Kam (fibrosis resistant) mouse strains and F1 and F2 (F1 intercross) progeny derived from the parental strains was developed to investigate the genetic basis of susceptibility to fibrosis. In the bleomycin studies the mice received 100 mg/kg (125 for females) of bleomycin, via mini osmotic pump. The animals were sacrificed at eight weeks following treatment or when their breathing rate indicated respiratory distress. In the radiation studies the mice were given a single dose of 14 or 16 Gy (Co$\sp{60})$ to the whole thorax and were sacrificed when moribund. The phenotype was defined as the percent of fibrosis area in the left lung as quantified with image analysis of histological sections. Quantitative trait loci (QTL) mapping was used to identify the chromosomal location of genes which contribute to susceptibility to bleomycin-induced pulmonary fibrosis in C57BL/6J mice compared to C3Hf/Kam mice and to determine if the QTL's which influence susceptibility to bleomycin-induced lung fibrosis in these progenitor strains could be implicated in susceptibility to radiation-induced lung fibrosis. For bleomycin, a genome wide scan revealed QTL's on chromosome 17, at the MHC, (LOD = 11.7 for males and 7.2 for females) accounting for approximately 21% of the phenotypic variance, and on chromosome 11 (LOD = 4.9), in male mice only, adding 8% of phenotypic variance. The bleomycin QTL on chromosome 17 was also implicated for susceptibility to radiation-induced fibrosis (LOD = 5.0) and contributes 7% of the phenotypic variance in the radiation study. In conclusion, susceptibility to both bleomycin-induced and radiation-induced pulmonary fibrosis are heritable traits, and are influenced by a genetic factor which maps to a genomic region containing the MHC. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the development of retinal and central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic islet cell tumors (PICT). The VHL gene maps to chromosome 3p25 and has been shown to be mutated in 57% of sporadic cases of RCC, implicating VHL in the genesis of RCC. We report a multigeneration VHL kindred in which four affected female siblings developed PICT at early ages. Analysis of the three coding exons of the VHL gene in this family revealed a single, missense mutation in codon 238. Inheritance of the 238 mutation has been reported to correlate with a 62% risk of pheochromocytoma development. In this kindred, all affected individuals carried the mutation as well as one additional sibling who showed no evidence of disease. Clinical screening of this individual indicated small ($<$1 cm) pancreatic and kidney tumors. Results suggest that inheritance of the codon 238 mutation does not correlate with early onset pheochromocytoma. Rather, the only individual in the pedigree with pheochromocytoma was the proband's mother who developed bilateral pheochromocytoma at the age of 62. Thus, the VHL codon 238 mutation may predispose to late onset pheochromocytoma in this family; however, it does not explain the preponderance of PICT in the third generation since this mutation has not been reported to increase the risk of developing pancreatic lesions. This suggests that inheritance of the codon 238 mutation and subsequent somatic inactivation of the wild type allele of the VHL gene may not be sufficient to explain the initiation and subsequent progression to malignancy in VHL-associated neoplasms. Since the two tumor types that most frequently progress to malignancy are RCC and PICT, we asked whether loss of heterozygosity (LOH) could be detected proximal to the VHL gene on chromosome 3 in distinct regions of 3p previously implicated by LOH and cytogenetic studies to contain tumor suppressor loci for RCC. LOH was performed on high molecular weight DNA isolated from peripheral blood and frozen tumor tissue of family members using microsatellite markers spanning 3p. Results indicated LOH for all informative 3p loci in tumor tissue from affected individuals with PICT. LOH was detected along the entire length of the chromosome arm and included the proximal region of 3p13-14.2 implicated in the hereditary form of renal cell carcinoma.^ If 3p LOH were a critical event in pancreatic islet cell tumorigenesis, then it should be expected that LOH in sporadic islet cell tumors would also be observed. We expanded LOH studies to include sporadic cases of PICT. Consistent LOH was observed on 3p with a highest frequency LOH in the region 3p21.2. This is the first evidence for an association between chromosome 3 loci and pancreatic islet cell tumorigenesis. (Abstract shortened by UMI.) ^