29 resultados para cell transformation

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A cloned nontumorigenic prostatic epithelial cell line, NbE-1.4, isolated from Noble (nbl/crx) rat ventral prostate, was used to examine the potential role of activated myc and neu oncogenes in prostate carcinogenesis. Transfection of SV40 promoter/enhancer driven constructs containing either v-myc, truncated c-myc, or neu-T (activated neu) oncogenes was accomplished using calcium phosphate-mediated DNA transfer. Cells were cotransfected, as necessary, with pSV2neo, allowing for selection of positive clones using the antibiotic geneticin (G418). G418 resistant colonies were pooled in some cases or limiting dilution exclusion cloned in others as described. Transfection of NbE-1.4 cells with activated myc oncogenes resulted only in the partial transformation. These cells display an altered morphology and decreased dependence on serum factors in vitro; however, saturation density, soft agar colony formation and growth assay in male athymic nude mice were all negative. Transfection and overexpression of NbE-1.4 cells with an activated neu oncogene alone resulted in tumorigenic conversion. Cell transformation was evident following an examination of the altered cellular morphology, an increased soft agar colony formation, and an acquisition of a tumorigenic potential when injected s.c. into male athymic nude mice. neu-transformed NbE-1.4 cells displayed elevated activity of the neu receptor tyrosine kinase. Furthermore, qualitative changes in tyrosine phosphorylated proteins were found in neu transformed cell clones. These changes were associated with elevated expression of mRNAs for laminin $\beta$1, $\beta$2, and procollagen type IV. The expression of fibronectin and E-cadherin, which are often lost during tumorigenesis, did not correlate with the tumorigenic phenotype. Therefore, it appears that neu oncogene overexpression has been found to be associated with the transformation of rat prostatic epithelial cells, presumably through alterations in gene expression that regulate extracellular matrix. The possible interrelationship and functional significance between neu oncogene expression and the elevated extracellular matrix gene expression is discussed. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our recent studies have shown that the FoxM1B transcription factor is overexpressed in human glioma tissues and that the level of its expression correlates directly with glioma grade. However, whether FoxM1B plays a role in the early development of glioma (i.e., in transformation) is unknown. In this study, we found that the FoxM1B molecule causes cellular transformation and tumor formation in normal human astrocytes (NHA) immortalized by p53 and pRB inhibition. Moreover, brain tumors that arose from intracranial injection of FoxM1B-expressing immortalized NHAs displayed glioblastoma multiforme (GBM) phenotypes, suggesting that FoxM1B overexpression in immortalized NHAs not only transforms the cells but also leads to GBM formation. Mechanistically, our results showed that overexpression of FoxM1B upregulated NEDD4-1, an E3 ligase that mediates the degradation and downregulation of phosphatase and tensin homologue (PTEN) in multiple cell lines. Decreased PTEN in turn resulted in the hyperactivation of Akt, which led to phosphorylation and cytoplasmic retention of FoxO3a. Blocking Akt activation with phosphoinositide 3-kinase/Akt inhibitors inhibited the FoxM1B-induced transformation of immortalized NHAs. Furthermore, overexpression of FoxM1B in immortalized NHAs increased the expression of survivin, cyclin D1, and cyclin E, which are important molecules for tumor growth. Collectively, these results indicate that overexpression of FoxM1B, in cooperation with p53 and pRB inhibition in NHA cells, promotes astrocyte transformation and GBM formation through multiple mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiomyolipomas are benign tumors of the kidney which express phenotypes of smooth muscle, fat, and melanocytes. These tumors appear with increased frequency in the autosomal dominant disorder tuberous sclerosis and are the leading cause of morbidity in adults with tuberous sclerosis. While benign, these tumors are capable of provoking life threatening hemorrhage and replacement of the kidney parenchyma, resulting in renal failure. The histogenesis of these tumors is currently unclear, although currently, we believe these tumors arise from "perivascular epithelioid cells" of which no normal counterpart has been convincingly demonstrated. Recently, stem cell precursors have been recognized that can give rise to smooth muscle and melanocytes. These precursors have been shown to express the neural stem cell marker NG2 and L1. In order to determine whether angiomyolipomas, which exhibit smooth muscle and melanocytic phenotypes, express NG2 and L1, we performed immunocytochemistry on a cell line derived from a human angiomyolipoma, and found that these cells are uniformly positive. Immunohistochemistry of human angiomyolipoma specimens revealed uniform staining of tumor cells, while renal cell carcinomas revealed positivity only of angiogenic vessels. These results support a novel histogenesis of angiomyolipoma as a defect in differentiation of stem cell precursors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mammalian constitutive photomorphogenic 1 (COP1), a p53 E3 ubiquitin ligase, is a key negative regulator for p53. DNA damage leads to the translocation of COP1 to the cytoplasm, but the underlying mechanism remains unknown. We discovered that 14-3-3σ controlled COP1 subcellular localization and protein stability. Investigation of the underlying mechanism suggested that, upon DNA damage, 14-3-3σ bound to phosphorylated COP1 at S387, resulting in COP1 translocation to the cytoplasm and cytoplasmic COP1 ubiquitination and proteasomal degradation. 14-3-3σ targeted COP1 for degradation to prevent COP1-mediated p53 degradation, p53 ubiquitination, and p53 transcription repression. COP1 expression promoted cell proliferation, cell transformation, and tumor progression, attesting to its role in cancer promotion. 14-3-3σ negatively regulated COP1 function and prevented tumor growth in cancer xenografts. COP1 protein levels were inversely correlated with 14-3-3σ protein levels in human breast and pancreatic cancer specimens. Together, these results define a novel, detailed mechanism for the posttranslational regulation of COP1 upon DNA damage and provide a mechanistic explanation of the correlation of COP1 overexpression with 14-3-3σ downregulation during tumorigenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The K1 gene of Kaposi sarcoma-associated herpesvirus (KSHV) encodes a transmembrane glycoprotein bearing a functional immunoreceptor tyrosine-based activation motif (ITAM). Previously, we reported that the K1 protein induced plasmablastic lymphomas in K1 transgenic mice, and that these lymphomas showed enhanced Lyn kinase activity. Here, we report that systemic administration of the nuclear factor kappa B (NF-kappaB) inhibitor Bay 11-7085 or an anti-vascular endothelial growth factor (VEGF) antibody significantly reduced K1 lymphoma growth in nude mice. Furthermore, in KVL-1 cells, a cell line derived from a K1 lymphoma, inhibition of Lyn kinase activity by the Src kinase inhibitor PP2 decreased VEGF induction, NF-kappaB activity, and the cell proliferation index by 50% to 75%. In contrast, human B-cell lymphoma BJAB cells expressing K1, but not the ITAM sequence-deleted mutant K1, showed a marked increase in Lyn kinase activity with concomitant VEGF induction and NF-kappaB activation, indicating that ITAM sequences were required for the Lyn kinase-mediated activation of these factors. Our results suggested that K1-mediated constitutive Lyn kinase activation in K1 lymphoma cells is crucial for the production of VEGF and NF-kappaB activation, both strongly implicated in the development of KSHV-induced lymphoproliferative disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) contained six major proteins, identified as gp55, gp33, p25, pp20, p12, and p10. Immunoprecipitation of cytoplasmic extracts from MMTV-infected, pulse-labeled cells identified three MMTV core-specific precursor proteins, termed Pr78('gag), Pr110('gag), Pr110('gag), and Pr180('gag+). The major intracellular core-specific precursor polyprotein, Pr78('gag), contained antigenic determinants and tryptic peptides characteristic of p25, p12, and p10. Pr110('gag) contained all but one of the leucine-containing tryptic peptides of Pr78('gag), plus several additional peptides. In addition to Pr78('gag) and Pr110('gag), monospecific antisera to virion p12 and p25 also precipitated from pulse-labeled cells a small amount of Pr180('gag+). This large polyprotein contained nearly all of the leucine-containing tryptic peptides of Pr78('gag) and Pr110('gag) plus several additional peptides. By analogy to type-C viral systems, Pr180('gag+) is presumed to represent a gag-pol-specific common precursor which is the major translation product in the synthesis of MMTV RNA-dependent-DNA polymerase. Immunoprecipitation of cytoplasmic extracts from pulse-labeled cells with antisera to gp55 identified two envelope-specific proteins, designated gPr76('env) and gP79('env). The major envelope-specific precursor, gPr76('env), could be labeled with radioactive glucosamine and contained antigenic determinants and tryptic peptides characteristic of gp55 and gp33. A quantitatively minor glycoprotein, gP79('env), contained both fucose and glucosamine and was precipitable from cytoplasmic extracts with monospecific serum to gp55. It is suggested that gP79('env) represents fucosylated gPr76('env) which is transiently synthesized and cleaved rapidly into gp55 and gp33.^ A glycoprotein of 130,00 molecular weight (gP130) was precipitable from the cytoplasm of GR-strain mouse mammary tumor cells by a rabbit antiserum (anti-MMTV) to Gr-strain mouse mammary tumors virus (GR-MMTV). Two dimensional thin layer analysis of ('35)S-methionine-containing peptides revealed that five of nine gp33 peptides and one of seven gp55 peptides were shared by gP130 and gPr76('env). Six of ten p25 peptides and four more core-related peptides were shared by Pr78('gag) and gP130. Protein gP130 also contained several tryptic peptides not found in gPr76('env), or in the core protein precursors Pr78('gag), Pr110('gag), or Pr180('gag+). both gP130 and a second protein, p30, were found in immunoprecipitates of detergent disrupted, isotopically labeled GR-MMTV treated with anti-MMTV serum. Results suggest that antibodies to gP130 in the anti-MMTV serum are capable of recognizing those protein sequences which are not related to viral structural proteins. These gP130-unique peptides are evidently host specific. Polyproteins consisting of juxtaposed host- and virus-related protein tracts have been implicated in the process of cell transformation in other mammalian systems. Therefore, gP130 may be instrinsic to the oncogenic potential of MMTV. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Certain inorganic nickel compounds such as crystalline NiS and Ni(,3)S(,2) are potent inducers of carcinogenesis and in vitro cell transformation, while several closely-related compounds such as amorphous NiS are essentially devoid of genotoxic activity. The phenomenon of selectivity of phagocytosis among such particulate nickel compounds has been hypothesized to account for their widely varying toxicological potency, yet the determinants of this selectivity have not been well characterized. Extracellular medium composition, particle dissolution, and particle surface charge were examined as potential determinants of selective phagocytosis for the carcinogenic crystalline and noncarcinogenic amorphous modifications of NiS. Selectivity and avidity of uptake of crystalline NiS by CHO cells was not dependent upon serum: phagocytosis of crystalline, but not amorphous NiS proceeded readily in a minimal salts/glucose medium at 37(DEGREES)C. The evolution of phagocytosis-inhibiting Ni(II) from the surface of amorphous NiS particles did not demonstrably contribute to the lower uptake of these noncarcinogenic particles despite their somewhat greater dissolution rate than the readily phagocytosed crystalline NiS particles. Significant differences in surface charge were noted between crystalline and amorphous NiS, the former being more negative in charge in distilled water suspension. Exposure of amorphous NiS particles to the vigorously reducing environment of a LiAlH(,4) solution under an inert atmosphere resulted in the particles' acquisition of a more negative surface charge. Amorphous NiS particles thus treated were phagocytosed by CHO cells to an extent similar to that of untreated crystalline NiS particles and likewise were shown to induce morphological transformation of primary Syrian hamster embryo cells with a similar potency. The potentiation of uptake characteristic of LiAlH(,4)-treated amorphous NiS was lost gradually upon storage of particles in ambient oxygenated atmosphere and was lost rapidly by apparent particle surface oxidation in aerated distilled water suspensions aged for up to 7 days. Concomitant with this loss of uptake there occurred a loss of negative surface charge. These results suggest the predominant role of particle surface charge rather than adsorbed serum components or particle dissolution as a determinant of selective phagocytosis among particulate nickel compounds. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Overexpression and/or amplification of HER2/neu is frequently detected in many human cancers. Activation of p185 tyrosine kinase can be achieved by point mutation, overexpression, deletion, and heterodimerization with other class I receptors. In this study I investigated the signal transduction pathways mediating the oncogenic signal of the point mutation-activated rat p185. I demonstrated that tyrosine phosphorylation of Shc and formation of Shc/Grb2 complex correlated to the transformation of NIH3T3 cells caused by the point mutation-activated rat HER2/neu. Furthermore, I observed that association with Shc was severely impaired by deletion of most of the major autophosphorylation sites of the point-mutated p185. The truncated p185 product, however, fully retained its ability to transform NIH3T3 cells, induce Shc tyrosine phosphorylation and Shc/Grb2 complex formation. These results suggest that tyrosine phosphorylation of Shc which allows formation of Shc/Grb2 complex may play an important role in cell transformation induced by the point mutation-activated p185, and that stable binding to mutant p185 may not be necessary for Shc to mediate this signaling pathway.^ Recent studies have suggested that formation of the complex containing Sos, Grb2 and Shc is important in coupling receptor tyrosine kinases to the Ras signaling pathway. To clarify the role of this trimer in the oncogenic signaling of the activated p185, I set out to interfere with the protein-protein interactions in Shc/Grb2/Sos complex by introducing Grb2 mutants with deletions in either amino- ($\Delta$N-Grb2) or carboxyl- ($\Delta$C-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells that express the point mutation-activated HER-2/neu. I found that the transformed phenotypes of the B104-1-1 cells were largely reversed by expression of the $\Delta$N-Grb2. The effect of the $\Delta$C-Grb2 on phenotypic reversion was much weaker. Biochemical analysis showed that the $\Delta$N-Grb2 was able to associate Shc but not the activated p185 nor Sos, while the $\Delta$C-Grb2 bound to Shc, the activated p185, and Sos. The p185-mediated Ras activation was severely inhibited by the $\Delta$N-Grb2 but not the $\Delta$C-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the $\Delta$N-Grb2 is able to impair the oncogenic signaling of the mutation-activated p185, indicating that (i) the $\Delta$N-Grb2 functions as a strong dominant-negative mutant, (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the mutation-activated p185. Unlike the $\Delta$N-Grb2, the $\Delta$C-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HER-2/neu is a receptor tyrosine kinase highly homologous with epidermal growth factor receptor. Overexpression and/or amplification of HER-2/neu has been implicated in the genesis of a number of human cancers, especially breast and ovarian cancers. Transcriptional upregulation has been shown to contribute significantly to the overexpression of this gene. Studies on the transcriptional regulation of HER-2/neu gene are important for understanding the mechanism of cell transformation and developing the therapeutic strategies to block HER-2/neu-mediated cancers. PEA3 is a DNA binding transcriptional factor and its consensus sequence exists on the HER-2/neu promoter. To examine the role of PEA3 in HER-2/neu expression and cell transformation, we transfected PEA3 into the human breast and ovarian cancer cells that overexpress HER-2/neu and showed that PEA3 dramatically represses HER-2/neu transcription. PEA3 suppresses the oncogenic neu-mediated transformation in mouse fibroblast NIH 3T3 cells. Expression of PEA3 selectively blocks the growth of human cancer cells that overexpress HER-2/neu and inhibits their colony formation. It does not occur in the cancer cells expressing basal level of HER-2/neu. Further studies in the orthotopic ovarian cancer model demonstrated that expression of PEA3 preferentially inhibits growth and tumor development of human cancer cells that overexpress HER-2/neu, the tumor-bearing mice survived significantly longer if treated by injection of the PEA3-liposome complex intraperitoneally. Immunoblotting and immunohistochemical analysis of the tumor tissues indicated that PEA3 mediates the tumor suppression activity through targeting HER-2/neu-p185. Thus, PEA3 is a negative regulator of HER-2/neu gene expression and functions as a tumor suppressor gene in the HER-2/neu-overexpressing human cancer cells.^ The molecular mechanisms of PEA3 mediated transcriptional repression were investigated. PEA3 binds specifically at the PEA3 site on HER-2/neu promoter and this promoter-binding is required for the PEA3 mediated transcriptional repression. Mutation of the PEA3 binding site on HER-2/neu promoter causes decreased transcriptional activity, indicating that the PEA3 binding site is an enhancer-like element in the HER-2/neu-overexpressing cells. We therefore hypothesized that in the HER-2/neu-overexpressing cells, PEA3 competes with a transactivator for binding to the PEA3 site, preventing the putative factor from activating the transcription of HER-2/neu. This hypothesis was supported by the data which demonstrate that PEA3 competes with another nuclear protein for binding to the HER-2/neu promoter in vitro, and expression of a truncated protein which encodes the DNA binding domain of PEA3 is sufficient to repress HER-2/neu transcription in the HER-2/neu-overexpressing human cancer cells. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discovery of grid cells in the medial entorhinal cortex (MEC) permits the characterization of hippocampal computation in much greater detail than previously possible. The present study addresses how an integrate-and-fire unit driven by grid-cell spike trains may transform the multipeaked, spatial firing pattern of grid cells into the single-peaked activity that is typical of hippocampal place cells. Previous studies have shown that in the absence of network interactions, this transformation can succeed only if the place cell receives inputs from grids with overlapping vertices at the location of the place cell's firing field. In our simulations, the selection of these inputs was accomplished by fast Hebbian plasticity alone. The resulting nonlinear process was acutely sensitive to small input variations. Simulations differing only in the exact spike timing of grid cells produced different field locations for the same place cells. Place fields became concentrated in areas that correlated with the initial trajectory of the animal; the introduction of feedback inhibitory cells reduced this bias. These results suggest distinct roles for plasticity of the perforant path synapses and for competition via feedback inhibition in the formation of place fields in a novel environment. Furthermore, they imply that variability in MEC spiking patterns or in the rat's trajectory is sufficient for generating a distinct population code in a novel environment and suggest that recalling this code in a familiar environment involves additional inputs and/or a different mode of operation of the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoid malignancy representing 5-10% of all non-Hodgkin’s lymphomas. It is distinguished by the t(11;14)(q13;q32) chromosomal translocation that juxtaposes the proto-oncogene CCND1, which encodes cyclin D1 at 11q13 to the IgH gene at 14q32. MCL patients represent about 6% of all new cases of Non-Hodgkin’s lymphomas per year or about 3,500 new cases per year. MCL occurs more frequently in older adults – the average age at diagnosis is the mid-60s with a male-to-female ratio of 2-3:1. It is typically characterized by the proliferation of neoplastic B-lymphocytes in the mantle zone of the lymph node follicle that have a prominent inclination to disseminate to other lymphoid tissues, bone marrow, peripheral blood and other organs. MCL patients have a poor prognosis because they develop resistance/relapse to current non-specific therapeutic regimens. It is of note that the exact molecular mechanisms underlying the pathogenesis of MCL are not completely known. It is reasonable to anticipate that better characterization of these mechanisms could lead to the development of specific and likely more effective therapeutics to treat this aggressive disease. The type I insulin-like growth factor receptor (IGF-IR) is thought to be a key player in several different solid malignancies such as those of the prostate, breast, lung, ovary, skin and soft tissue. In addition, recent studies in our lab showed evidence to support a pathogenic role of IGF-IR in some types of T-cell lymphomas and chronic myeloid leukemia. Constitutively active IGF-IR induces its oncogenic effects through the inhibition of apoptosis and induction of transformation, metastasis, and angiogenesis. Previous studies have shown that signaling through IGF-IR leads to the vi activation of multiple signaling transduction pathways mediated by the receptor-associated tyrosine kinase domain. These pathways include PI3K/Akt, MAP kinase, and Jak/Stat. In the present study, we tested the possible role of IGF-IR in MCL. Our results demonstrate that IGF-IR is over-expressed in mantle cell lymphoma cell lines compared with normal peripheral blood B- lymphocytes. Furthermore, inhibition of IGF-IR by the cyclolignan picropodophyllin (PPP) decreased cell viability and cell proliferation in addition to induction of apoptosis and G2/M cell cycle arrest. Screening of downstream oncogenes and apoptotic proteins that are involved in both IGF-IR and MCL signaling after treatment with PPP or IGF-IR siRNA showed significant alterations that are consistent with the cellular changes observed after PPP treatment. Therefore, our findings suggest that IGF-IR signaling contributes to the survival of MCL and thus may prove to be a legitimate therapeutic target in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PAX2 is one of nine PAX genes regulating tissue development and cellular differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, cell-lineage specification, migration, and survival. Unattenuated PAX2 has been found in several cancer types. We therefore sought to elucidate the role of PAX2 in ovarian carcinomas. We found that PAX2 was expressed in low-grade serous, clear cell, endometrioid and mucinous cell ovarian carcinomas, which are relatively chemoresistant compared to high grade serous ovarian carcinomas. Four ovarian cancer cell lines, RMUGL (mucinous), TOV21G (clear cell), MDAH-2774 (endometrioid) and IGROV1 (endometrioid), which express high-levels of PAX2, were used to study the function of PAX2. Lentiviral shRNAs targeting PAX2 were used to knock down PAX2 expression in these cell lines. Cellular proliferation and motility assays subsequently showed that PAX2 stable knockdown had slower growth and migration rates. Microarray gene expression profile analysis further identified genes that were affected by PAX2 including the tumor suppressor gene G0S2. Reverse phase protein array (RPPA) data showed that PAX2 knockdown affected several genes that are involved in apoptosis, which supports the fact that downregulation of PAX2 in PAX2-expressing ovarian cancer cells inhibits cell growth. We hypothesize that this growth inhibition is due to upregulation of the tumor suppressor gene G0S2 via induction of apoptosis. PAX2 represents a potential therapeutic target for chemoresistant PAX2-expressing ovarian carcinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.