86 resultados para TUMOR-CELLS

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigenic changes present in nonantigenic tumor cells exposed to UV radiation (UV) in vitro were investigated by addressing the following questions: (1) Are antigenic variants (AV) produced that are rejected in normal but not immunosuppressed mice? (2) Does generation of AV depend upon intrinsic properties of the cells exposed or result from the action of UV? (3) Is antigenic modification induced by UV due to increased histocompatibility antigen expression? (4) Do AV crossreact immunologically with parental tumor or with other AV? and (5) Is the UV-associated common antigen expressed on UV-induced tumors present on UV-irradiated tumor cells? AV were generated at different frequencies following in vitro UV irradiation of a spontaneous murine fibrosarcoma (51% of cell lines tested), a murine melanoma (56%), and two melanoma clones (100% and 11%). This indicated that the percentage of AV produced is an intrinsic property of the cell line exposed. The increased antigenicity did not correlate with an increased expression of class I histocompatibility antigens. Immunological experiments demonstrated that the AV and parental cells shared a determinant that was susceptible to immune recognition, but incapable of inducing immunity. In contrast, the AV were noncrossreactive, suggesting that variant-specific antigens were also expressed. Finally, the AV were recognized by UV-induced suppressor cells, indicating that the UV-associated common antigen expressed by UV-induced tumors was also present. This investigation provides new information on the susceptibility of tumors to antigenic modification by UV and on the relationship between tumor antigens and neoplastic transformation. Furthermore, it suggests an immunological approach for cancer therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the process of cancer metastasis, the majority of circulating tumor cells arrest in microcapillary beds and then rapidly die. To study whether vascular endothelial cells can directly lyse tumor cells, we isolated vascular endothelial cells by perfusion of lungs from immunocompetent or nude mice. The cells were grown in culture, and then cloned and characterized. Cloned endothelial cells were incubated with several lymphokines and cytokines. Cells incubated with IFN-$\gamma$ and TNF lysed a variety of tumor cells with different metastatic potential. Mouse skin and lung fibroblasts treated with the same cytokines did not. Endothelial cell mediated tumor cell lysis was not due to different binding ability of tumor cells to cytokine treated and untreated endothelial monolayers. Kinetic studies demonstrated that the continuous presence of cytokines in the tumor-endothelial cocultures was necessary to produce maximal lysis of tumor cells. Target cell lysis was not due to the direct effects of IFN-$\gamma$ or TNF, since vascular endothelial cells isolated from the lung of nude mice lysed human melanoma cells that are sensitive or resistant to TNF. Cytokine treated endothelial cells produced a high level of nitric oxide, which is known to be cytotoxic to a variety of target cells. The level of nitric oxide production was directly correlated with the degree of tumor cell lysis. A specific inhibitor of nitric oxide synthesis(N$\sp{\rm G}$-monomethyl-L-arginine), completely inhibited production of nitric oxide and tumor cell lysis. Treatment of cytokine activated endothelial cells with dexamethasone also inhibited tumor cell lysis. This inhibition was independent of tumor-endothelial adhesion but correlated with inhibition of nitric oxide production. Collectively, these results suggest that vascular endothelial cells can directly destory tumor emboli and thus play an active role in the pathogenesis of cancer metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particular interest has been directed towards the macrophage as a primary antineoplastic cell due to its tumoricidal properties in vitro and the observation that an inverse relationship exists between the number of macrophages infiltrating a tumor and metastatic potential. The mechanism of macrophage-mediated injury of tumor cells remains unknown. Recently, it has been shown that injured tumor cells have defective mitochondrial respiration. Our studies have shown that activated macrophages can release soluble factors which can alter tumor cell respiration.^ The effects of a conditioned supernatant (CS) from cultures of activated macrophages on tumor cell (TC) mitochondrial respiration was studied. CS was obtained by incubation of BCG-elicited, murine peritoneal macrophage with RPMI-1640 supplemented with 10% FCS and 50 ng/ml bacterial endotoxin. This CS was used to treat cultures of EMT-6 TC for 24 hours. Mitochondrial respiration was measured polarigraphically using a Clark-type oxygen electrode. Cell growth rate was assessed by ('3)H-Thymidine incorporation. Exposure of EMT-6 TC to CS resulted in the inhibition of malate and succinate oxidation 76.6% and 72.9%, respectively. While cytochrome oxidase activity was decreased 61.1%. This inhibition was accompanied by a 98.8% inhibition of DNA synthesis (('3)H-Thymidine incorporation). Inhibition was dose-related with a 21.3% inhibition of succinate oxidase from a 0.3 ml dose of CS and a 50% inhibition with 1.0 mls. Chromatography of CS on Sephacryl S-200 resulted in isolation of an 80,000 and a 55,000 dalton component which contained the respiration inhibiting activity (RIF). These factors were distinct from a 120,000 dalton cytolytic factor determined by bioassay on Actinomycin-D treated L929 cells. RIF activity was also distinct from several other cytostatic factors but was itself associated with 2 peaks of cytostatic activity. Characterization of the RIF activity showed that it was destroyed by trypsin and heat (100(DEGREES)C, 5 min). It was stable over a broad range of pH (4-9) and its production was inhibited by cycloheximide. The RIF did not have a direct effect on isolated mitochondria of TC nor did it induce the formation of a stable intracellular toxin for mitochondria.^ In conclusion, activated macrophages synthesize and secrete an 80,000 and a 55,000 dalton protein which inhibits the mitochondrial metabolism of TC. These factors induce a cytostatic but not a cytolytic effect on TC.^ The macrophage plays a role in the control of normal and tumor cell growth and in tissue involution. Inhibition of respiration may be one mechanism used by macrophages to control cell growth.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to regulate cell cycle progression is one of the differences that separates normal from tumor cells. A protein, which is frequently mutated or deleted in a majority of tumor cells, is the retinoblastoma protein (pRb). Previously, we reported that normal cells, which have a wild-type Rb pathway, can be reversibly arrested in the G1 phase of the cell cycle by staurosporine (ST), while tumor cells were unaffected by this treatment. As a result, ST may be used to protect normal cells against the toxic affects of chemotherapy. Here we set out to determine the mechanism(s) by which ST can mediate a reversible G1 arrest in pRb positive cells. To this end, we used an isogenic cell model system of normal human mammary epithelial cells (HMEC) with either intact pRb+ (p53-) or p53+ (pRb-) treated with ST. Our results show that pRb+ cells treated with low concentrations of ST, arrested in the G1 phase of the cell cycle; however, in pRb - cells there was no response. This was verified as a true G 1 arrest in pRb+ cells by two different methods for monitoring cell cycle kinetics and in two additional model systems for Rb (i.e. pRb -/- mouse embryo fibroblasts, and downregulation of RB with siRNA). Our results indicated that ST-mediated G1 arrest required pRb, which in turn initiated a cascade of events leading to inhibition of CDK4 and CDK2 activities and up-regulation of p21 protein. Further assessment of this pathway revealed the novel finding that Chk1 expression and activity were required for the Rb-dependent, ST-mediated G1 arrest. In fact, overexpression of Chk1 facilitated recovery from ST-mediated G1 arrest, an effect only observed in RB+ cells. Collectively, our data suggest pRb is able to cooperate with Chk1 to mediate a G1 arrest in pRb+ cells, but not in pRb- cells. The elucidation of this pathway can help identify novel agents that can be used to protect cancer patients against the debilitating affects of chemotherapy, by targeting only the normal proliferating cells in the body that are otherwise destroyed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% (1.38 million) of the total new cancer cases and 14% (458,400) of the total cancer deaths in 2008. [1] Triple-negative breast cancer (TNBC) is an aggressive phenotype comprising 10–20% of all breast cancers (BCs). [2-4] TNBCs show absence of estrogen, progesterone and HER2/neu receptors on the tumor cells. Because of the absence of these receptors, TNBCs are not candidates for targeted therapies. Circulating tumor cells (CTCs) are observed in blood of breast cancer patients even at early stages (Stage I & II) of the disease. Immunological and molecular analysis can be used to detect the presence of tumor cells in the blood (Circulating tumor cells; CTCs) of many breast cancer patients. These cells may explain relapses in early stage breast cancer patients even after adequate local control. CTC detection may be useful in identifying patients at risk for disease progression, and therapies targeting CTCs may improve outcome in patients harboring them. Methods . In this study we evaluated 80 patients with TNBC who are enrolled in a larger prospective study conducted at M D Anderson Cancer Center in order to determine whether the presence of circulating tumor cells is a significant prognostic factor in relapse free and overall survival . Patients with metastatic disease at the time of presentation were excluded from the study. CTCs were assessed using CellSearch System™ (Veridex, Raritan, NJ). CTCs were defined as nucleated cells lacking the presence of CD45 but expressing cytokeratins 8, 18 or 19. The distribution of patient and tumor characteristics was analyzed using chi square test and Fisher's exact test. Log rank test and Cox regression analysis was applied to establish the association of circulating tumor cells with relapse free and overall survival. Results. The median age of the study participants was 53years. The median duration of follow-up was 40 months. Eighty-eight percent (88%) of patients were newly diagnosed (without a previous history of breast cancer), and (60%) of patients were chemo naïve (had not received chemotherapy at the time of their blood draw for CTC analysis). Tumor characteristics such as stage (P=0.40), tumor size (P=69), sentinel nodal involvement (P=0.87), axillary lymph node involvement (P=0.13), adjuvant therapy (P=0.83), and high histological grade of tumor (P=0.26) did not predict the presence of CTCs. However, CTCs predicted worse relapse free survival (1 or more CTCs log rank P value = 0.04, at 2 or more CTCs P = 0.02 and at 3 or more CTCs P < 0.0001) and overall survival (at 1 or more CTCs log rank P value = 0.08, at 2 or more CTCs P = 0.01 and at 3 or more CTCs P = 0.0001. Conclusions. The number of circulating tumor cells predicted worse relapse free survival and overall survival in TNBC patients.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is a rare but very aggressive form of locally advanced breast cancer (1-6% of total breast cancer patients in United States), with a 5-year overall survival rate of only 40.5%, compared with 85% of the non-IBC patients. So far, a unique molecular signature for IBC able to explain the dramatic differences in the tumor biology between IBC and non-IBC has not been identified. As immune cells in the tumor microenvironment plays an important role in regulating tumor progression, we hypothesized that tumor-associated dendritic cells (TADC) may be responsible for regulating the development of the aggressive characteristics of IBC. MiRNAs can be released into the extracellular space and mediate the intercellular communication by regulating target gene expression beyond their cells of origin. We hypothesized that miRNAs released by IBC cells can induce an increased activation status, secretion of pro-inflammatory cytokines and migration ability of TADC. In an in vitro model of IBC tumor microenvironment, we found that the co-cultured of the IBC cell line SUM-149 with immature dendritic cells (iDCSUM-149) induced a higher degree of activation and maturation of iDCSUM-149 upon stimulation with lipopolysaccharide (LPS) compared with iDCs co-cultured with the non-IBC cell line SUM-159 (iDCSUM-159), resulting in: increased expression of the costimulatory and activation markers; higher production of pro-inflammatory cytokines (TNF-a, IL-6); and 3) higher migratory ability. These differences were due to the exosome-mediated transfer of miR-19a and miR-146a from SUM-149 and SUM-159, respectively, to iDCs, causing the downregulation of the miR-19a target genes PTEN, SOCS-1 and the miR-146a target genes IRAK1, TRAF6. PTEN, SOCS-1 and IRAK1, TRAF6 are important negative and positive regulator of cytokine- and TLR-mediated activation/maturation signaling pathway in DCs. Increased levels of IL-6 induced the upregulation of miR-19a synthesis in SUM-149 cells that was associated with the induction of CD44+CD24-ALDH1+ cancer stem cells (CSCs) with epithelial-to-mesenchymal transition (EMT) characteristics. In conclusion, in IBC tumor microenvironment IL-6/miR-19a axis can represent a self-sustaining loop able to maintain a pro-inflammatory status of DCs, leading to the development of tumor cells with high metastatic potential (EMT CSCs) responsible of the poor prognosis in IBC patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human peripheral blood lymphocytes (PBL) cultured for varying lengths of time in IL-2 are able to mediate antibody independent cellular cytotoxicity (AICC) as well as antibody dependent cellular cytotoxicity (ADCC) against a wide range of tumor targets. The objective of our study is to determine the cytotoxic potential of the subset of LAK cells involved in ADCC, the tumor recognition mechanism in ADCC, the kinetics of ADCC mediated by PBL cultured under various conditions and the role of TNF-$\alpha$ in the development and maturation of ADCC effectors in the LAK population.^ The model system in this study for ADCC used a monoclonal antibody 14G2a (IgG2a), that recognizes the GD2 epitope on human melanoma cell line, SK-Mel-1. The target recognition mechanism operative in AICC (traditionally known as lymphokine activated killing or LAK) is an acquired property of these IL-2 activated cells which confers on them the unique ability to distinguish between tumor and normal cells. This recognition probably involves the presence of a trypsin sensitive N-linked glycoprotein epitope on tumor cells. Proteolytic treatment of the tumor cells with trypsin renders them resistant to AICC by PBL cultured in IL-2. However, ADCC is unaffected. This ADCC, mediated by the relatively small population of cells that are positive for the Fc receptor for IgG (FcR), is an indication that this subset of "LAK" cells does not require the trypsin sensitive epitope on tumor cells to mediate killing. Enriching PBL for FcR+ cells markedly enhanced both AICC and ADCC and also reduced the IL-2 requirement of these cells.^ The stoichiometry of Fc receptor (FcR) expression on the cytotoxic effectors does not correlate with ADCC lytic activity. Although FcRs are necessary to mediate ADCC, other factors, appear to regulate the magnitude of cytolytic activity. In order to investigate these putative factors, the kinetics of ADCC development was studied under various conditions (in IL-2 (10u/ml) and 100u/ml), in IL-2(10u/ml) + TNF$\alpha$ (500u/ml) and in TNF-$\alpha$ (500u/ml) alone). Addition of exogenous TNF-$\alpha$ into the four hour cytotoxicity assay did not increase ADCC, nor did anti-TNF antibodies result in inhibition. On the other hand, addition of anti-TNF antibodies to PBL and IL-2 for 24 hours, resulted in a marked inhibition of the ADCC, suggesting that endogenous TNF-$\alpha$ is obligatory for the maturation and differentiation of ADCC effectors. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite multiple changes in the adjuvant chemotherapy regimens used to treat osteosarcoma (OS), the 2-year metastasis-free survival has remained at 65–70% for the past 10 years. Characterizing the molecular determinants that permit metastatic spread of tumor cells is a crucial element in developing new approaches for the treatment of osteosarcoma. Since OS metastasizes almost exclusively to the lung, an organ with constitutive Fas ligand (FasL) expression, we hypothesized that the expression of Fas (CD95, APO-1) by OS cells may play a role in the ability of these cells to form lung metastases. Fas expression was quantified in human SAOS-2 OS cells and selected variants (LM2, LM4, LM5, LM6, LM7). Using northern blot, FACS and RT-PCR analysis, low Fas expression was found to correlate with higher metastatic potential in these cell lines. The highly metastatic LM7 cell line was transfected with the full-length human Fas gene and injected into athymic nude mice. The median number of metastatic nodules per mouse fell from over 200 to 1.1 and the size of the nodules decreased from a range of 0.5–9.0 mm to less than 0.5 mm in the Fas-transfected cell line compared to the native LM7 cell line. Additionally, the subsequent incidence of lung metastases was lower in the Fas-expressing cell line. IL-12 was seen to upregulate Fas expression in the highly metastatic LM sublines in vitro. To visualize the effects of IL-12 in vivo, nude mice were injected with LM7 cells and treated biweekly for 4 weeks with Ad.mIL-12, saline control or Ad.βgal. Lung sections were analyzed via immunchistochemistry for Fas expression. A higher expression of Fas was found in tumors from mice receiving IL-12. To study the mechanism by which IL-12 upregulates Fas, LM7 cells were transfected with a luciferase reporter gene construct containing the full-length human fas promoter. Treatment with IL-12 increased luciferase activity. We therefore conclude that IL-12 influences the metastatic potential of OS cells by upregulating the fas promoter, resulting in increased cell surface Fas expression and susceptibility to Fas-induced cell death. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chemotherapy is a common and effective method to treat many forms of cancer. However, treatment of cancer with chemotherapy has severe side effects which often limit the doses of therapy administered. Because some cancer chemotherapeutics target proliferating cells and tissues, all dividing cells, whether normal or tumor, are affected. Cell culture studies have demonstrated that UCN-01 is able to reversibly and selectively arrest normal dividing cells; tumor cells lines do not undergo this temporary arrest. Following UCN-01 treatment, normal cells displayed a 50-fold increase in IC50 for camptothecin; tumor cells showed no such increased tolerance. We have examined the response of the proliferating tissues of the mouse to UCN- 01 treatment, using the small bowel epithelium as a model system. Our results indicate that UCN-01 treatment can cause a cell cycle arrest in the gut epithelium, beginning 24 hours following UCN-01 administration, with cell proliferation remaining suppressed for one week. Two weeks post-UCN-01 treatment the rate of proliferation returns to normal levels. 5-FU administered during this period demonstrates that UCN-01 is able to provide protection to normal cells of the mouse within a narrow window of efficacy, from three to five days post-UCN-01. UCN-01 pretreated mice displayed improved survival, weight status and blood markers following 5-FU compared to control mice, indicating that UCN-01 can protect normal dividing tissues. The mechanism by which UCN-01 arrests normal cells in vivo was also examined. We have demonstrated that UCN-01 treatment in mice causes an increase in the G1 phase cell cycle proteins cdk4 and cyclin D, as well as the inhibitor p27. Phosphorylated Rb was also elevated in the arrested cells. These results are a departure from cell culture studies, in which inhibition of G1 phase cyclin dependent kinases led to hyposphosphorylation of Rb. Future investigation will be required to understand the mechanism of UCN-01 action. This is important information, especially for identification of alternate compounds which could provide the protection afforded by UCN-01.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiomyolipomas are benign tumors of the kidney which express phenotypes of smooth muscle, fat, and melanocytes. These tumors appear with increased frequency in the autosomal dominant disorder tuberous sclerosis and are the leading cause of morbidity in adults with tuberous sclerosis. While benign, these tumors are capable of provoking life threatening hemorrhage and replacement of the kidney parenchyma, resulting in renal failure. The histogenesis of these tumors is currently unclear, although currently, we believe these tumors arise from "perivascular epithelioid cells" of which no normal counterpart has been convincingly demonstrated. Recently, stem cell precursors have been recognized that can give rise to smooth muscle and melanocytes. These precursors have been shown to express the neural stem cell marker NG2 and L1. In order to determine whether angiomyolipomas, which exhibit smooth muscle and melanocytic phenotypes, express NG2 and L1, we performed immunocytochemistry on a cell line derived from a human angiomyolipoma, and found that these cells are uniformly positive. Immunohistochemistry of human angiomyolipoma specimens revealed uniform staining of tumor cells, while renal cell carcinomas revealed positivity only of angiogenic vessels. These results support a novel histogenesis of angiomyolipoma as a defect in differentiation of stem cell precursors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antiangiogenesis is a promising anti-tumor strategy through inhibition tumor vascularformation to suppress tumor growth. Targeting specific VEGF/R has been showntherapeutic benefits in many cancer types and become a first approvedantiangiogenic modalities by Food and Drug Administration (FDA) in United States.However, interruption of homeostasis in normal tissues that is likely due to theinhibition of VEGF/R signaling pathway induces unfavorable side effects. Moreover,cytostatic nature of antiangiogenic drugs frequently causes less tumor cell specifickilling activity, and cancer cells escaped from cell death induced by these drugseven gain more malignant phenotypes, resulting in tumor invasion and metastasis.To overcome these issues, we developed a novel anti-tumor therapeutic EndoCDfusion protein which linked endostatin (Endo) to cytosine deaminase-uracilvphosphoribosyl transferase (CD). Endo targets unique tumor endothelial cells toprovide tumor-specific antiangiogenesis activity and also carries CD to the localtumor area, where it serves nontoxic prodrug 5-fluorocytosine (5-FC) enzymaticconversion reaction to anti-metabolite chemotherapy drug 5-fluorouracil (5-FU). Wedemonstrated that 5-FU concentration was highly increased in tumor sites, resultingin high level of endothelial cells and tumor cells cytotoxic efficacy. Furthermore,EndoCD/5-FC therapy decreased tumor growth and colorectal liver metastasisincident compared with bevacizumab/5-FU treatment in human breast and colorectalliver metastasis orthotropic animal models. In cardiotoxicity safety profile,EndoCD/5-FC is a contrast to bevacizumab/5-FU; lower risk of cardiotoxicityinduction or heart function failure was found in EndoCD/5-FC treatment thanbevacizumab/5-FU does in mice. EndoCD/5-FC showed more potent therapeuticefficacy with high safety profile and provided stronger tumor invasion or metastasisinhibition than antiangiogenic drugs. Together, EndoCD fusion protein with 5-FCshowed dual tumor targeting activities including antiangiogenesis and tumor localchemotherapy, and it could serve as an alternative option for antiangiogenic therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cyclin E is the regulatory subunit of the cyclin E/CDK2 complex that mediates the G1-S phase transition. N-terminal cleavage of cyclin E by elastase in breast cancer generates two low molecular weight (LMW) isoforms that exhibit both enhanced kinase activity and resistance to p21 and p27 inhibition compared to fulllength cyclin E. Clinically, approximately 27% of breast cancer patients overexpress LMW-E and associate with poor survival. Therefore, we hypothesize that LMW-E disrupts normal mammary acinar morphogenesis and serves as the initial route into breast tumor development. We first demonstrate that LMW-E overexpression in non-tumorigenic hMECs is sufficient to induce tumor formation in athymic mice significantly more than overexpression of full-length cyclin E and requires CDK2- associated kinase activity. Further in vivo passaging of these tumors augments LMW-E expression and tumorigenic potential. When subjected to acinar morphogenesis in vitro, LMW-E mediates significant morphological disruption by generating hyperproliferative and multi-acinar complexes. Proteomic analysis of patient tissues and tumor cells with high LMW-E expression reveals that the activation of the b-Raf-ERK1/2-mTOR pathway in concert with high LMW-E expression predicts poor patient survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (b-raf inhibitor) effectively prevented aberrant acinar formation in LMW-E-expressing cells by inducing the G1/S cell cycle arrest. In addition, the LMW-E-expressing tumor cells exhibit phenotypes characteristic of the EMT and enhanced cellular invasiveness. These tumor cells also enrich for cells with CSC phenotypes such as increased CD44hi/CD24lo population, enhanced mammosphere formation, and upregulation of ALDH expression and enzymatic activity. Furthermore, the CD44hi/CD24lo population also shows positive correlation with LMW-E expression in both the tumor cell line model and breast cancer patient samples (p<0.0001 & p=0.0435, respectively). Combination treatment using doxorubicin and salinomycin demonstrates synergistic cytotoxic effects in cells with LMW-E expression but not in those with full-length cyclin E expression. Finally, ProtoArray microarray identifies Hbo1 as a novel substrate of the cyclin E/CDK2 complex and its overexpression results in enrichment for CSCs. Collectively, these data emphasize the strong oncogenic potential of LMW-E in mammary tumorigenesis and suggest possible therapeutic strategies to treat breast cancer patients with high LMW-E expression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

I have undertaken measurements of the genetic (or inherited) and nongenetic (or noninherited) components of the variability of metastasis formation and tumor diameter doubling time in more than 100 metastatic lines from each of three murine tumors (sarcoma SANH, sarcoma SA4020, and hepatocarcinoma HCA-I) syngeneic to C3Hf/Kam mice. These lines were isolated twice from lung metastases and analysed immediately thereafter to obtain the variance to spontaneous lung metastasis and tumor diameter doubling time. Additional studies utilized cells obtained from within 4 passages of isolation. Under the assumption that no genetic differences in metastasis formation or diameter doubling time existed among the cells of a given line, the variance within a line would estimate nongenetic variation. The variability derived from differences between lines would represent genetic origin. The estimates of the genetic contribution to the variation of metastasis and tumor diameter doubling time were significantly greater than zero, but only in the metastatic lines of tumor SANH was genetic variation the major source of metastatic variability (contributing 53% of the variability). In the tumor cell lines of SA4020 and HCA-I, however, the contribution of nongenetic factors predominated over genetic factors in the variability of the number of metastasis and tumor diameter doubling time. A number of other parameters examined, such as DNA content, karyotype, and selection and variance analysis with passage in vivo, indicated that genetic differences existed within the cell lines and that these differences were probably created by genetic instability. The mean metastatic propensity of the lines may have increased somewhat during their isolation and isotransplantation, but the variance was only slightly affected, if at all. Analysis of the DNA profiles of the metastatic lines of SA4020 and HCA-I revealed differences between these lines and their primary parent tumors, but not among the SANH lines and their parent tumor. Furthermore, there was a direct correlation between the extent of genetic influence on metastasis formation and the ability of the tumor cells to develop resistance to cisplatinum. Thus although nongenetic factors might predominate in contributing to metastasis formation, it is probably genetic variation and genetic instability that cause the progression of tumor cells to a more metastatic phenotype and leads to the emergence of drug resistance. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most skin cancers induced in mice by Ultraviolet (UV) radiation express highly immunogenic Tumor specific transplantation antigens (TSTAs) and thus exhibit a regressor phenotype. In this study, I have used cloned genes encoding tumor antigens and oncogenes in conjunction with DNA transfection technique to isolate and characterize regressor variants from progressor tumors and vice versa. The purpose of this study was (1) to determine whether the product of a cloned gene (216) from UV-1591 tumor, which encodes a novel MHC class I antigen can function as a tumor rejection antigen when expressed on unrelated, nonantigenic, murine tumor cells or whether its function is restricted to UV-induced tumors, and (2) to determine the processes by which progressor variants derived from a regressor UV-2240 cell line by transfection with an activated Ha-ras oncogene escape the immune defenses of the normal immunocompetent host.^ To answer the first question, a spontaneously transformed, nonimmunogenic cell line (10T-1) was cotransfected with DNA from p216 and pSV2-neo plasmids. Results demonstrate that the product of a cloned TSTA gene from a UV-induced murine tumor is capable of functioning as a tumor rejection antigen when expressed on unrelated, nonantigenic tumor cells. In addition, these results indicate that this approach could be used to augment the immune response against poorly antigenic tumors.^ To answer the second question, progressor variants were isolated from a highly antigenic UV radiation-induced C3H mouse regressor fibrosarcoma cell line, UV-2240, by transfection with an activated Ha-ras oncogene. Subcutaneous injection of Ha-ras-transfected UV-2240 cells into immunocompetent C3H mice produced tumors in 4 of 36 animals. In addition, the Ha-ras-induced progressor variants produced experimental lung metastasis in both normal C3H and nude mice, although they induced more lung nodules in nude mice than in normal C3H mice. Results indicate that the progressor phenotype of the Ha-ras-induced tumor variants is not due to loss of TSTAs or MHC class I antigens. This implies that some tumors can escape the immune defenses of the normal immunocompetent host by mechanisms other than the loss of TSTAs and MHC class I antigens. (Abstract shortened with permission of author.) ^