28 resultados para Purine-Nucleoside Phosphorylase
em DigitalCommons@The Texas Medical Center
Resumo:
The biochemical determinants of cytotoxicity of the purine nucleoside analog, 9-(beta)-D-xylofuranosyladenine (xyl-A) were studied in wild-type Chinese hamster ovary cells and in nucleoside kinase deficient mutants. It was found that {('3)H}xyl-A was readily phosphorylated to the triphosphate level in both the wild-type and deoxycytidine kinase deficient mutant, but not by the adenosine kinase deficient cells. Values for the apparent Km and Vmax of this uptake process were 43.9 (mu)M and 118.7 nmol/min/10('9) cells, respectively. Cloning procedures indicated that the viability of CHO cells was decreased 90 per cent by a 5-hr incubation with 10 (mu)M xyl-A. However, the toxicity of xyl-A was increased 100-fold by the addition of a nontoxic concentration (10 (mu)M) of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) to the medium. High-pressure liquid chromatographic analysis indicated that after 5 hr, the concentration of 9-(beta)-D-xylofuranosyladenine 5'-triphosphate (xyl-ATP) in cells incubated with xyl-A plus EHNA was 2.0 mM, four times greater than in those cells incubated with xyl-A alone. Incubation with xyl-A plus EHNA had no significant effect on the cellular concentrations of 5-phosphoribosyl-1-pyrophosphate after 1 hr whereas, treatment with 3'-dexoyadenosine (cordycepin) decreased the concentration of this metabolite. Determinations of the cellular nucleoside triphosphates indicated that under conditions that resulted in an intracellular accumulation of 500 (mu)M xyl-ATP, the endogenous concentrations of neither the ribonucleoside triphosphates nor deoxyribonucleoside triphosphates were significantly different from those of control cells. The ID(,50) for {('3)H}thymidine incorporation into DNA, 105 (mu)M xyl-ATP, was four-fold less than the ID(,50) for {('3)H}uridine incorporation into RNA suggesting that the process of DNA synthesis is more sensitive to the presence of xyl-ATP. When removed from exogenous xyl-A, CHO cells failed to recover their ability to synthesize RNA and DNA, although the intracellular xyl-ATP concentration decreased to less than 35 (mu)M. The selective inhibition of RNA synthesis by 6-azauridine did not prevent the expression of toxicity by xyl-ATP. However, the selective inhibition of DNA synthesis by ara-C significantly spared toxicity in cells that had accumulated an otherwise lethal concentration of xyl-ATP. It is shown that in cells which had accumulated 1.27 mM {('3)H}xyl-ATP, {('3)H}xyl-A was found to terminate cellular RNA chains at a frequency of 1.42 (mu)mol of {('3)H}xyl-A 3' termini per mol of mononucleotide. These results indicate that a general mechanism for the toxicity of xyl-A to CHO cells includes the cellular accumulation of xyl-ATP, which serves as a substrate for RNA synthesizing enzymes and subsequently is incorporated into nascent RNA transcripts as a chain terminator. A specific mechanism involving the premature termination of RNA primers required for the initiation of DNA synthesis is proposed to account for the inhibitory action of xyl-ATP on DNA synthesis. ^
Resumo:
In both euploid Chinese hamster (Cricetulus griseus) cells and pseudodiploid Chinese hamster ovary (CHO) cells, gene assignments were accomplished by G band chromosome and isozyme analysis (32 isozymes) of interspecific somatic cell hybrids obtained after HAT selection of mouse CL 1D (TK('-)) cells which were PEG-fused with either euploid Chinese hamster cells or HPRT('-) CHO cells. Hybrids slowly segregated hamster chromosomes. Clone panels consisting of independent hybrid clones and subclones containing different combinations of Chinese hamster chromosomes and isozymes were established from each type of fusion.^ These clone panels enabled us to provisionally assign the loci for: nucleoside phosphorylase (NP), glyoxalase (GLO), glutathione reductase (GSR), adenosine kinase (ADK), esterase D (ESD), peptidases B and S (PEPB and -S) and phosphoglucomutase 2 (PGM2, human nomenclature) to chromosome 1; adenylate kinase 1 (AK1), adenosine deaminase (ADA) and inosine triosephosphatase (ITP) to chromosome 6; triosephosphate isomerase (TPI) to chromosome 8; and glucose phosphate isomerse (GPI) and peptidase D (PEPD) to chromosome 9.^ We also confirm the assignments of 6-phosphogluconate dehydrogenase (PGD), PGM1, enolase 1 (ENO1) and diptheria toxin sensitivity (DTS) to chromosome 2 as well as provisionally assign galactose-1-phosphate uridyl transferase (GALT) and AK2 to chromosome 2. Selection in either HAT or BrdU for hybrids that had retained or lost the chromosome carrying the locus for TK enabled us to assign the loci for TK, galactokinase (GALK) and acid phosphatase 1 (ACP1) to Chinese hamster chromosome 7.^ These results are discussed in relation to current theories on the basis for high frequency of drug resistant autosomal recessive mutants in CHO cells and conservation of mammalian autosomal linkage groups. ^
Resumo:
The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^
Resumo:
The mammalian kidney maintains homeostasis of the extracellular environment and eliminates toxic substances from the body, in part via secretion by the organic cation transporters (OCT). Some nucleosides are also secreted by the kidney. Previous work indicated that the deoxyadenosine analog, 2′ -deoxytubercidin (dTub), is secreted by mouse kidney through the OCTs. This study examines the role of OCTs in the renal secretion of dTub and other nucleoside analogs. ^ Using the Xenopus laevis oocyte expression system, the basolateral type rat organic cation transporter rOCT1 was shown to transport dTub and other nucleosides. The positive charged form of dTub (dTub +) appears to be the substrate for rOCT1. Tetraethylammonium (TEA) and dTub competitively inhibit the other's uptake by rOCT1 in a manner consistent with their interaction at a common site. Although 67% homologous with rOCT1, rOCT2 does not mediate the uptake of these nucleosides. Kinetic studies demonstrated the difference in substrate specificity between rOCT1 and rOCT2 to be largely due to a poor affinity of rOCT2 for dTub+. This difference in affinity is located within transmembrane domains 2–7 as determined by chimeric constructs. ^ OCT1 knockout mice were used to evaluate the role of OCT1 in the renal secretion of dTub. No significant difference in tissue distribution and urinary excretion of dTub was observed between the knockout and wild-type mice, indicating that OCT1 is not necessary for the renal secretion of dTub. Apical transporters are postulated to participate in its active secretion. To characterize a possible apical transporter, we screened several renal cell lines for a nucleoside-sensitive OCT. American opossum kidney proximal tubule cells (OK) express a TEA efflux transporter that is inhibited by dTub and other nucleoside analogs. This carrier is metabolic-dependent and distinct from the cloned OCTs to date, i.e. it is sodium- and proton-independent. In conclusion, dTub is a good substrate for OCT1; however, this OCT is not necessary for its renal secretion in mice. The novel TEA efflux transporter identified in OK cells is likely to participate in the renal secretion of dTub and perhaps other nucleoside analogs. ^
Resumo:
Nucleoside analogues are antimetabolites effective in the treatment of a wide variety of solid tumors and hematological malignancies. Upon being metabolized to their active triphosphate form, these agents are incorporated into DNA during replication or excision repair synthesis. Because DNA polymerases have a greatly decreased affinity for primers terminated by most nucleoside analogues, their incorporation causes stalling of replication forks. The molecular mechanisms that recognize blocked replication may contribute to drug resistance but have not yet been elucidated. Here, several molecules involved in sensing nucleoside analogue-induced stalled replication forks have been identified and examined for their contribution to drug resistance. ^ The phosphorylation of the DNA damage sensor, H2AX, was characterized in response to nucleoside analogues and found to be dependent on both time and drug concentration. This response was most evident in the S-phase fraction and was associated with an inhibition of DNA synthesis, S-phase accumulation, and activation of the S-phase checkpoint pathway (Chk1-Cdc25A-Cdk2). Exposure of the Chk1 inhibitor, 7-hydroxystaurosporine (UCN-01), to cultures previously treated with nucleoside analogues caused increased apoptosis, clonogenic death, and a further log-order increase in H2AX phosphorylation, suggesting enhanced DNA damage. Ataxia-telangiectasia mutated (ATM) has been identified as a key DNA damage signaling kinase for initiating cell cycle arrest, DNA repair, and apoptosis while the Mre11-Rad50-Nbs1 (MRN) complex is known for its functions in double-strand break repair. Activated ATM and the MRN complex formed distinct nuclear foci that colocalized with phosphorylated H2AX after inhibition of DNA synthesis by the nucleoside analogues, gemcitabine, ara-C, and troxacitabine. Since double-strand breaks were undetectable, this response was likely due to stalling of replication forks. A similar DNA damage response was observed in human lymphocytes after exposure to ionizing radiation and in acute myelogenous leukemia blasts during therapy with the ara-C prodrug, CP-4055. Deficiencies in ATM, Mre11, and Rad50 led to a two- to five-fold increase in gemcitabine sensitivity, suggesting that these molecules contribute to drug resistance. Based on these results, a model is proposed for the sensing of nucleoside analogue-induced stalled replication forks that includes H2AX, ATM, and the Mre11-Rad50-Nbs1 complex. ^
Resumo:
Objective. Itraconazole is recommended life-long for preventing relapse of disseminated histoplasmosis in HIV-infected patients. I sought to determine if serum itraconazole levels are affected by the type of Highly Active Anti-Retroviral Therapy (NNRTI or PI) being taken concomitantly to treat HIV. ^ Design. Retrospective cohort. ^ Methods. De-identified data were used from an IRB-approved parent study which identified patients on HAART and maintenance itraconazole for confirmed disseminated histoplasmosis between January 2003 and December 2006. Available itraconazole blood levels were abstracted as well as medications taken by each patient at the time of the blood tests. Mean itraconazole levels were compared using the student's t-test. ^ Results. 11 patients met study criteria. Patient characteristics were: median age 36, 91% men, 18% white, 18% black, 55% Hispanic and 9% Asians, median CD4 cell count 120 cells/mm3. 14 blood levels were available for analysis—8 on PI, 4 on NNRTI and 2 on both. 8/8 itraconazole levels obtained while taking concomitant PI were therapeutic (>0.4 μg/mL) in contrast to 0/4 obtained while taking NNRTI. Two patients switched from NNRTI to PI and reached therapeutic levels. Mean levels on NNRTI (0.05 μg/mL, s.d. 0.0) and on PI (2.45 μg/mL, s.d. 0.21) for these two patients were compared via a paired t-test (t = 16.00, d.f. = 1, P = 0.04). Remaining patient levels were compared using an unpaired t-test. Mean itraconazole on concomitant PI (n = 6) was 1.37 μg/mL (s.d. 0.74), while the mean on concomitant NNRTI was 0.05 μg/mL (s.d. 0.0), t = 2.39, d.f. = 6, P = 0.05. ^ Conclusions. Co-administration of NNRTI and itraconazole results in significant decreases in itraconazole blood levels, likely by inducing the CYP3A4 enzyme system. Itraconazole drug levels should be monitored in patients on concomitant NNRTI. PI-based HAART may be preferred over NNRTI-based HAART when using itraconazole to treat HIV-infected patients with disseminated histoplasmosis. ^
Resumo:
DNA-directed nucleoside analogues, such as ara-C, fludarabine, and gemcitabine, are antimetabolites effective in the treatment of a variety of cancers. However, resistance to nucleoside analogue-based chemotherapy in treatments is still a major problem in therapy. Therefore, it is essential to develop rationales for optimizing the use of nucleoside analogues in combination with other anticancer drugs or modalities such as radiation. The present study focuses on establishing mechanism-based combination strategy to overcome resistance to nucleoside analogues. ^ I hypothesized that the cytostatic concentrations of nucleoside analogues may cause S-phase arrest by activating an S-phase checkpoint that consists of a series of kinases. This may allow cells to repair damaged DNA over time and spare cytotoxicity. Thus, the ability of cells to enact an S-phase arrest in response to incorporation of potentially lethal amounts of nucleoside analogue may serve as a mechanism of resistance to S-phase-specific agents. As a corollary, the addition of a kinase inhibitor, such as UCN-01, may dysregulate the checkpoint response and abrogate the survival of S-phase-arrested cells by suppression of the survival signaling pathways. Using gemcitabine as a model of S-phase-specific nucleoside analogues in human acute myelogenous leukemia ML-1 cells, I demonstrated that cells arrested in S-phase in response to cytostatic conditions. Proliferation continued after washing the cells into drug-free medium, suggesting S-phase arrest served as a resistance mechanism of cancer cells to spare cytotoxicity of nucleoside analogues. However, nontoxic concentrations of UCN-01 rapidly killed S-phase-arrested cells by apoptosis. Furthermore, the molecular mechanism for UCN-01-induced apoptosis in S-phase-arrested cells was through inhibition of survival pathways associated with these cells. In this regard, suppression of the PI 3-kinase-Akt-Bad survival pathway as well as the NF-κB signaling pathway were associated with induction of apoptosis in S-phase-arrested cells by UCN-01, whereas the Ras-Raf-MEK-ERK pathway appeared not involved. This study has provided the rationales and strategies for optimizing the design of effective combination therapies to overcome resistance to nucleoside analogues. In fact, a clinical trial of the combination of ara-C with UCN-01 to treat relapsed or refractory AML patients has been initiated at U.T.M.D. Anderson Cancer Center. ^
Resumo:
Chronic lung diseases and acute lung injuries are two distinctive pulmonary disorders that result in significant morbidity and mortality. Adenosine is a signaling nucleoside generated in response to injury and can serve both protective and destructive functions in tissues and cells through interaction with four G-protein coupled adenosine receptors: A1R, A2AR, A2BR, and A3R. However, the relationship between these factors is poorly understood. Recent findings suggest the A2BR has been implicated in the regulation of both chronic lung disease and acute lung injury. The work presented in this dissertation utilized the adenosine deaminase-deficient mouse model and the bleomycin-induced pulmonary injury model to determine the distinctive roles of the A2BR at different stages of the disease. Results demonstrate that the A2BR plays a protective role in attenuating vascular leakage in acute lung injuries and a detrimental role at chronic stages of the disease. In addition, tissues from patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were utilized to examine adenosine metabolism and signaling in chronic lung diseases. Results demonstrate that components of adenosine metabolism and signaling are altered in a manner that promotes adenosine production and signaling in the lungs of these patients. Furthermore, this study provides the first evidence that A2BR signaling can promote the production of inflammatory and fibrotic mediators in patients with these disorders. Taken together, these findings suggest that the A2BR may have a bi-phasic effect at different stages of lung disease. It is protective in acute injury, whereas pro-inflammatory and pro-fibrotic at the chronic stage. Patients with acute lung injury or chronic lung disease may both benefit from adenosine and A2BR-based therapeutics.
Resumo:
Chronic lung diseases (CLDs) are a considerable source of morbidity and mortality and are thought to arise from dysregulation of normal wound healing processes. An aggressive, feature of many CLDs is pulmonary fibrosis (PF) and is characterized by excess deposition of extracellular matrix (ECM) proteins from myofibroblasts in airways. However, factors regulating myofibroblast biology are incompletely understood. Proteins in the cadherin family contribute epithelial to mesenchymal transition (EMT), a suggested source of myofibroblasts. Cadherin 11 (CDH11) contributes to developmental and pathologic processes that parallel those seen in PF and EMT. Utilizing Cdh11 knockout (Cdh11 -/-) mice, the goal of this study was to characterize the contribution of CDH11 in the bleomycin model of PF and assess the feasibility of treating established PF. We demonstrate CDH11 in macrophages and airway epithelial cells undergoing EMT in lungs of mice given bleomycin and patients with PF. Endpoints consistent with PF including ECM production and myofibroblast formation are reduced in CDH11-targeted mice given bleomycin. Findings suggesting mechanisms of CDH11-dependent fibrosis include the regulation of the profibrotic mediator TGF-â in alveolar macrophages and CDH11-mediated EMT. The results of this study propose CDH11 as a novel drug target for PF. In addition, another CLD, chronic obstructive pulmonary disease (COPD), is characterized by airway inflammation and destruction. Adenosine, a nucleoside signaling molecule generated in response to cell stress is upregulated in patients with COPD and is suggested to contribute to its pathogenesis. An established model of adenosine-mediated lung injury exhibiting features of COPD is the Ada -/- mouse. Previous studies in our lab suggest features of the Ada -/- phenotype may be secondary to adenosine-dependent expression of osteopontin (OPN). OPN is a protein implicated in a variety of human pathology, but its role in COPD has not been examined. To address this, Ada/Opn -/- mice were generated and endpoints consistent with COPD were examined in parallel with Ada -/- mice. Results demonstrate OPN-mediated pulmonary neutrophilia and airway destruction in Ada -/- mice. Furthermore, patients with COPD exhibit increased OPN in airways which correlate with clinical airway obstruction. These results suggest OPN represents a novel biomarker or therapeutic target for the management of patients with COPD. The importance of findings in this thesis is highlighted by the fact that no pharmacologic interventions have been shown to interfere with disease progression or improve survival rates in patients with COPD or PF.
Resumo:
A three-point linkage group comprised of loci coding for adenosine deaminase (ADA), glucose-6-phosphate dehydrogenase (G6PDH), and 6-phospho-gluconate dehydrogenase (6PGD) is described in fish of the genus Xiphophorus (Poeciliidae). The alleles at loci in this group were shown to assort independently from the alleles at three other loci--isocitrate dehydrogenase 1 and 2, and glyceraldehyde-3-phosphate dehydrogenase 1. Alleles at the latter three loci also assort independently from each other. Data were obtained by observing the segregation of electrophoretically variant alleles in reciprocal backcross hybrids derived from crosses between either X. helleri guentheri or X. h. strigatus and X. maculatus. The linkage component of chi2 was significant (less than 0.01) in all crosses, indicating that the linkage group is conserved in all populations of both species of Xiphophorus examined. While data from X. h. guentheri backcrosses indicate the linkage relationship ADA--6%--G6PDH--24%--6PGD, and ADA--29%--6PGD (30% when corrected for double crossovers), data from backcrosses involving strigatus, while supporting the same gene order, yielded significantly different recombination frequencies. The likelihood of the difference being due to an inversion could not be separated from the possibility of a sex effect on recombination in the present data. The linkage of 6PGD and G6PDH has been shown to exist in species of at least three classes of vertebrates, indicating the possibility of evolutionary conservation of this linkage.
Resumo:
Agrobacterium VirB2 pilin is required for assembly of the VirB/VirD4 type IV secretion system (T4SS). The propilin is processed by signal sequence cleavage and covalent linkage of the N and C termini, and the cyclized pilin integrates into the inner membrane (IM) as a pool for assembly of the secretion channel and T pilus. Here, by use of the substituted cysteine accessibility method (SCAM), we defined the VirB2 IM topology and then identified distinct contributions of the T4SS ATPase subunits to the pilin structural organization. Labeling patterns of Cys-substituted pilins exposed to the membrane-impermeative, thiol-reactive reagent 3-(N-maleimidopropionyl)biocytin (MPB) supported a topology model in which two hydrophobic stretches comprise transmembrane domains, an intervening hydrophilic loop (residues 90 to 94) is cytoplasmic, and the hydrophilic N and C termini joined at residues 48 and 121 form a periplasmic loop. Interestingly, the VirB4 ATPase, but not a Walker A nucleoside triphosphate (NTP) binding motif mutant, induced (i) MPB labeling of Cys94, a residue that in the absence of the ATPase is located in the cytoplasmic loop, and (ii) release of pilin from the IM upon osmotic shock. These findings, coupled with evidence for VirB2-VirB4 complex formation by coimmunoprecipitation, support a model in which VirB4 functions as a dislocation motor to extract pilins from the IM during T4SS biogenesis. The VirB11 ATPase functioned together with VirB4 to induce a structural change in the pilin that was detectable by MPB labeling, suggestive of a role for VirB11 as a modulator of VirB4 dislocase activity.
Resumo:
Upon sensing of peptide pheromone, Enterococcus faecalis efficiently transfers plasmid pCF10 through a type IV secretion (T4S) system to recipient cells. The PcfF accessory factor and PcfG relaxase initiate transfer by catalyzing strand-specific nicking at the pCF10 origin of transfer sequence (oriT). Here, we present evidence that PcfF and PcfG spatially coordinate docking of the pCF10 transfer intermediate with PcfC, a membrane-bound putative ATPase related to the coupling proteins of gram-negative T4S machines. PcfC and PcfG fractionated with the membrane and PcfF with the cytoplasm, yet all three proteins formed several punctate foci at the peripheries of pheromone-induced cells as monitored by immunofluorescence microscopy. A PcfC Walker A nucleoside triphosphate (NTP) binding site mutant (K156T) fractionated with the E. faecalis membrane and also formed foci, whereas PcfC deleted of its N-terminal putative transmembrane domain (PcfCDelta N103) distributed uniformly throughout the cytoplasm. Native PcfC and mutant proteins PcfCK156T and PcfCDelta N103 bound pCF10 but not pcfG or Delta oriT mutant plasmids as shown by transfer DNA immunoprecipitation, indicating that PcfC binds only the processed form of pCF10 in vivo. Finally, purified PcfCDelta N103 bound DNA substrates and interacted with purified PcfF and PcfG in vitro. Our findings support a model in which (i) PcfF recruits PcfG to oriT to catalyze T-strand nicking, (ii) PcfF and PcfG spatially position the relaxosome at the cell membrane to stimulate substrate docking with PcfC, and (iii) PcfC initiates substrate transfer through the pCF10 T4S channel by an NTP-dependent mechanism.
Resumo:
Trophism as a "clonal dominance" support mechanism for tumor cells is an unexplored area of tumor progression. This report presents evidence that the human melanoma low-affinity neurotrophin receptor (p75) can signal independently of its high-affinity tyrosine kinase counterparts, the TRK family of kinases. Signaling may be accomplished by a p75-associated purine-analog-sensitive kinase and results in enhanced invasion into a reconstituted basement membrane with a corresponding stimulation of matrix metalloproteinase-2 expression. Additionally, a "stress culture" survival assay was developed to mimic the growth limiting conditions encountered by melanoma cells in a rapidly growing primary tumor or metastatic deposit prior to neoangiogenesis. Under these conditions, p75, promotes the survival of high p75 expressing brain-colonizing melanoma cells. Extensive 70W melanoma cell-cell contact, which downregulates p75, immediately precedes the induction of cell death associated with diminished production of two key cell survival factors, bcl-2 and the p85 subunit of phosphoinositol-3-kinase, and an elevation in apoptosis promoting intracellular reactive oxygen species (ROSs). Since one function of bcl-2 may be to control the generation of ROSs via the antioxidant pathway, these cells may receive a apoptosis-prompting "double hit". 70W melanoma cell death occurred by an apoptotic mechanism displaying classical morphological changes including plasma membrane blebbing, loss of microvilli and redistribution of ribosomes. 70W apoptosis could be pharmacologically triggered following anti-p75 monoclonal antibody-mediated clustering of p75 receptors. 70W cells fluorescently sorted for high-p75 expression (p75$\sp{\rm H}$ cells) exhibited an augmented survival potential and a predilection to sort with the S + G2/M growth phase, relative to their low p75 expressing, p75$\sp{\rm L}$ counterparts. Apoptosis is significantly delayed by p75$\sp{\rm H}$ cells, whereas p75$\sp{\rm L}$ cells are exquisitely prone to initiate apoptosis. Importantly, the p75$\sp{\rm L}$ cells that survive apoptosis, highly re-expressed p75 and were remarkably responsive to exogenous NGF.^ These are the first data to implicate p75-mediated neurotrophism as an invasion and survival support mechanism employed by brain-metastatic cells. In particular, these results may have implications in little understood phenomena of tumor progression, such as the emergence of "clonal dominance" and tumor dormancy. ^