40 resultados para Protein Cleavage Site

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin and structure of P55$\sp{\rm gag},$ a gag encoded polyprotein lacking the nucleocapsid protein, NCp10, have been explored. Evidence shows that P55$\sp{\rm gag}$ is formed by non-viral proteolytic cleavage of the Moloney murine leukemia virus (MoMuLV)gag precursor protein, Pr65$\sp{\rm gag}.$ P55$\sp{\rm gag}$ is produced in cells infected by a viral protease deletion mutant and by a recombinant murine sarcoma virus known to lack the protease gene, implying that a cellular protease is responsible for the cleavage. Structural and immunological studies show that the protein cleavage site is upstream of the CAp30-NCp10 viral proteolytic junction, implying that P55$\sp{\rm gag}$ lacks the carboxy-terminal residues of CAp30. During the course of studying P55$\sp{\rm gag},$ another protein was discovered, which I named nucleocapsid-related protein(NCRP). NCRP possesses the portion of CAp30 that is lacking in P55$\sp{\rm gag}.$ NCRP possesses antigenic epitopes present in CAp30 and NCp10. NCRP was observed in virus lysates and in nuclear lysates of MoMuLV infected cells; it was not detected in the cytoplasmic fractions of MoMuLV infected cells. Our results indicated that NCRP originates from Pr65$\sp{\rm gag},$ resulting from the same cellular proteolytic cleavage event that produces the viral cellular protein P55$\sp{\rm gag}.$ P55$\sp{\rm gag}$- and NCRP-like proteins also were observed in AKV murine leukemia virus (AKV MuLV) and feline leukemia virus (FeLV) infected cells and in their respective virus particles. The site of cleavage that yields P55$\sp{\rm gag}$ and NCRP is within the carboxy terminus of CAp30, likely within a motif highly conserved among mammalian type C retroviruses. This new motif, called the capsid conserved motif (CCM), overlaps a region containing both a possible bipartite nuclear targeting sequence and a region homologous with the U1 small nuclear ribonucleoprotein 70-kD protein. This domain, when intact, may act as a nuclear targeting sequence for the gag precursor proteins Pr65$\sp{\rm gag}$ and CAp30. Nuclei of cells infected with MoMuLV were examined for the presence of gag proteins. Both Pr65$\sp{\rm gag}$ and CAp30 were detected in the nuclear fraction of MoMuLV, AKV MuLV and FeLV infected cells. P55$\sp{\rm gag}$ was never detected in the nucleus of MoMuLV, AKV MuLV and FeLV infected cells or in their respective virus particles. I propose that NCRP may be involved in sequestering viral genomic RNA for the purposes of encapsidation and intracellular viral genomic RNA dimerization. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human pro-TNF-$\alpha$ is a 26 kd type II transmembrane protein, and it is the precursor of 17 kd mature TNF. Pro-TNF release mature from its extracellular domain by proteolytic cleavage between resideu Ava ($-$1) and Val (+1). Both forms of TNF are biologically active and the native form of mature TNF is a bell-shaped trimer. The structure of pro-TNF was studied both in intact cell system and in an in vitro translation system by chemical crosslinking. We found that human pro-TNF protein exist as a trimer in intact cells (LPS-induced THP-1 cells and TNF cDNA transfected COS-3 cells) and this trimeric structure is assembled intracellularly, possibly in the ER. By analysis several deletion mutants, we observed a correlation between expression of pro-TNF cytotoxicity in a juxtacrine fashion and detection of the trimer, suggesting the trimeric structure is very important for its biologic activity. With a series of deletion mutants in the linking domain, we found that the small deletion did not block the cleavage and large deletion did regardless of the presence or absence of the native cleavage site, suggesting that the length of the residues between the plasma membrane and the base of the trimer determines the rate of the cleavage, possibly by blocking the accessibility of the cleavage enzyme to its action site. Our data also suggest that the native cleavage site is not sufficient for the release of mature TNF and alternative cleavage site(s) exists. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coagulase-negative staphylococci (CNS) are recognized as important pathogens and are particularly associated with foreign body infections. S. epidermidis accounts for approximately 75% of the infections caused by CNS. Three genes, sdrF, sdrG, and sdrH, were identified by screening a S. epidermidis genomic library with a probe encompassing the serine-aspartate dipeptide repeat-encoding region (region R) of clfA from S. aureus. SdrG has significant amino acid identity to ClfA, ClfB and other surface proteins of S. aureus. SdrG is also similar to a protein (Fbe) recently described by Nilsson, et al. (Infection and Immunity, 1998, 66:2666–73) from S. epidermidis. The N-terminal domain (A region) of SdrG was expressed as a his-tag fusion protein in E. coli. In an ELISA, this protein, rSdrG(50-597) was shown to bind specifically to fibrinogen (Fg). Western ligand blot analysis showed that SdrG binds the Bβ chain of Fg. To further characterize the rSdrG(50-597)-Fg interaction, truncates of the Fg Bβ chain were made and expressed as recombinant proteins in E. coli. SdrG was shown to bind the full-length Bβ chain (1462), as well as the N-terminal three-quarters (1-341), the N-terminal one-half (1-220) and the N-terminal one-quarter (1-95) Bβ chain constructs. rSdrG(50-597) failed to bind to the recombinant truncates that lacked the N-terminal 25 amino acid residues of this polypeptide suggesting that SdrG recognizes a site within this region of the Bβ chain. Inhibition ELISAs have shown that peptide mimetics, including β1–25, and β6–20, encompassing this 25 residue region can inhibit binding of rSdrG(50-597) to Fg coated wells. Using fluorescence polarization we were able to determine an equilibrium constant (KD) for the interaction of rSdrG(50-597) with the Fg Bβ chain peptide β1–25. The labeled peptide was shown to bind to rSdrG(50-597) with a KD of 0.14 ± 0.01μM. Because rSdrG(50-597) recognizes a site in the Fg Bβ chain close to the thrombin cleavage site, we investigated the possibility of the rSdrG(50-597) site either overlapping or lying close to this cleavage site. An ELISA showed that rSdrG(50-597) binding to thrombin-treated Fg was significantly reduced. In a clot inhibition assay rSdrG(50-597) was able to inhibit fibrin clot formation in a concentration dependent manner. Furthermore, rSdrG(50-597) was able to inhibit clot formation by preventing the release of fibrinopeptide B as determined by HPLC. To further define the interaction between rSdrG(50-597) and peptide β6–20, we utilized an alanine amino acid replacement strategy. The residues in β6–20 that appear to be important in rSdrG(50-597) binding to Fg, were confirmed by the rSdrG(273-597)-β6–20 co-crystal structure that was recently solved by our collaborators at University of Alabama-Birmingham. Additionally, rSdrG(50-597) was not able to bind to Fg from different animal species, rather it bound specifically to human Fg in an ELISA. This suggests that the sequence variation between Fg Bβ chains of different species, specifically with in the N-terminal 25 residues, affects the ability of rSdrG(50-597) binding to Fg, and this may explain why S. epidermidis is primarily a human pathogen. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Osteosarcoma, a malignant bone tumor, rapidly destroys the cortical bone. We demonstrated that mouse K7M2 osteosarcoma cells were deficient in osterix (osx), a zinc finger-containing transcription factor required for osteoblasts differentiation and bone formation. These cells formed lytic tumors when injected into the tibia. The destruction of bone is mediated by osteoclasts in osteosarcoma. The less expression of osterix with osteolytic phenotype was also observed in more tumor cell lines. Replacement of osterix in K7M2 cells suppressed lytic bone destruction, inhibited tumor growth in vitro and in vivo, and suppressed lung metastasis in vivo and the migration of K7M2 to lung conditioned medium in vitro. By contrast, inhibiting osterix by vector-based small interfering RNA (siRNA) in two cell lines (Dunn and DLM8) that expressed high levels of osterix converted osteoblastic phenotype to lytic. Recognizing and binding of Receptor Activator of NF-κB (RANK) on osteoclast precursors by its ligand RANKL is the key osteoclastogenic event. Increased RANKL results in more osteoclast activity. We investigated whether K7M2-mediated bone destruction was secondary to an effect on RANKL. The conditioned medium from K7M2 could upregulate RANKL in normal osteoblast MC3T3, which might lead to more osteoclast formation. By contrast, the conditioned medium from K7M2 cells transfected with osx-expressing plasmid did not upregulate RANKL. Furthermore, Interleukin-1alpha (IL-1α) was significantly suppressed following osx transfection. IL-1α increased RANKL expression in MC3T3 cells, suggesting that osx may control RANKL via a mechanism involving IL-1α. Using a luciferase reporter assay, we demonstrated that osx downregulated IL-1α through a transcription-mediated mechanism. Following suppression of osterix in Dunn and DLM8 cells led to enhanced IL-1α promoter activity and protein production. Site-directed mutagenesis and Chromatin immunoprecipitation (ChIP) indicated that osterix downregulated IL-1α through a Sp1-binding site on the IL-1α promoter. These data suggest that osterix is involved in the lytic phenotype of osteosarcoma and that this is mediated via transcriptional repression of IL-1α. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AP-2γ is a member of the AP-2 transcription factor family, is highly enriched in the trophoblast cell lineage, and is essential for placenta development. In an effort to identify factors regulating AP-2γ gene expression we isolated and characterized the promoter and 5′ flanking region of the mouse and human AP-2γ genes. The transcription start site of the mouse AP-2γ gene was mapped by primer extension and 5′ RACE. Transient gene transfer studies showed that basal promoter activity resides within a highly conserved ∼200 by DNA sequence located immediately upstream of the transcription start site. The conserved region is highly GC-rich and lacks typical TATA or CCAAT boxes. Multiple potential Sp and AP-2 binding sites are clustered within this region. Electrophoretic mobility shift assays demonstrated that Sp1 and Sp3 bind to three sites in the promoter region of the mouse AP-2γ gene. Combined mutation of the three putative Sp sites reduced promoter activity by 80% in trophoblast and non-trophoblast cells, demonstrating the functional importance of these sites in AP-2γ gene expression. ^ Mutational analysis of the 5′-flanking region revealed a 117-bp positive regulatory region of the mouse AP-2γ gene located between −5700 and −5583 upstream of the transcription start site. This 117-bp positive regulatory element provided approximately 7-fold enhancement of reporter gene expression in cultured trophoblast cells. A C/EBP-Sp1 transcription factor-binding module is located in this DNA sequence. Electrophoretic mobility shift assays demonstrated that transcription factors Sp1, Sp3 and C/EBP bind to the enhancer element. Mutation of each protein-binding site reduced the enhanced expression significantly. Mutagenesis assays showed that two other protein-binding sites also contribute to the enhancer activity. In summary, we have shown that Sp1 and Sp3 bind to cis-regulatory elements located in the promoter region and contribute to basal promoter activity. We have identified a 117-bp positive regulatory element of AP-2γ gene, and we have shown that Sp and C/EBP proteins bind to the cis -regulatory elements and contribute to the enhanced gene expression. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tyrosine hydroxylase (TH), the initial and rate limiting enzyme in the catecholaminergic biosynthetic pathway, is phosphorylated on multiple serine residues by multiple protein kinases. Although it has been demonstrated that many protein kinases are capable of phosphorylating and activating TH in vitro, it is less clear which protein kinases participate in the physiological regulation of catecholamine synthesis in situ. These studies were designed to determine if protein kinase C (PK-C) plays such a regulatory role.^ Stimulation of intact bovine adrenal chromaffin cells with phorbol esters results in stimulation of catecholamine synthesis, tyrosine hydroxylase phosphorylation and activation. These responses are both time and concentration dependent, and are specific for those phorbol ester analogues which activate PK-C. RP-HPLC analysis of TH tryptic phosphopeptides indicate that PK-C phosphorylates TH on three putative sites. One of these (pepetide 6) is the same as that phosphorylated by both cAMP-dependent protein kinase (PK-A) and calcium/calmodulin-dependent protein kinase (CaM-K). However, two of these sites (peptides 4 and 7) are unique, and, to date, have not been shown to be phosphorylated by any other protein kinase. These peptides correspond to those which are phosphorylated with a slow time course in response to stimulation of chromaffin cells with the natural agonist acetylcholine. The activation of TH produced by PK-C is most closely correlated with the phosphorylation of peptide 6. But, as evident from pH profiles of tyrosine hydroxylase activity, phosphorylation of peptides 4 and 7 affect the expression of the activation produced by phosphorylation of peptide 6.^ These data support a role for PK-C in the control of TH activity, and suggest a two stage model for the physiological regulation of catecholamine synthesis by phosphorylation in response to cholinergic stimulation. An initial fast response, which appears to be mediated by CaM-K, and a slower, sustained response which appears to be mediated by PK-C. In addition, the multiple site phosphorylation of TH provides a mechanism whereby the regulation of catecholamine synthesis appears to be under the control of multiple protein kinases, and allows for the convergence of multiple, diverse physiological and biochemical signals. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CREB [CRE (cAMP-response element)-binding protein] is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA (retinoic acid) rapidly activates CREB without using RARs (RA receptors) or RXRs (retinoid X receptors) in NHTBE cells (normal human tracheobronchial epithelial cells). However, little is known about the role of RA in the physiological regulation of CREB expression in the early mucous differentiation of NHTBE cells. In the present study, we report that RA up-regulates CREB gene expression and that, using 5'-serial deletion promoter analysis and mutagenesis analyses, two Sp1 (specificity protein 1)-binding sites located at nt -217 and -150, which flank the transcription initiation site, are essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nt -119 and -98 contributed to basal promoter activity. Interestingly, RA also up-regulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using siRNA (small interfering RNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA up-regulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in up-regulating human CREB gene expression. This result implies that co-operation of these two transcription factors plays a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mammalian cells, mRNA decay begins with deadenylation, which involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. The regulation of the critical deadenylation step and its relationship with RNA-processing bodies (P-bodies), which are thought to be a site where poly(A)-shortened mRNAs get degraded, are poorly understood. Using the Tet-Off transcriptional pulsing approach to investigate mRNA decay in mouse NIH 3T3 fibroblasts, we found that TOB, an antiproliferative transcription factor, enhances mRNA deadenylation in vivo. Results from glutathione S-transferase pull-down and coimmunoprecipitation experiments indicate that TOB can simultaneously interact with the poly(A) nuclease complex CCR4-CAF1 and the cytoplasmic poly(A)-binding protein, PABPC1. Combining these findings with those from mutagenesis studies, we further identified the protein motifs on TOB and PABPC1 that are necessary for their interaction and found that interaction with PABPC1 is necessary for TOB's deadenylation-enhancing effect. Moreover, our immunofluorescence microscopy results revealed that TOB colocalizes with P-bodies, suggesting a role of TOB in linking deadenylation to the P-bodies. Our findings reveal a new mechanism by which the fate of mammalian mRNA is modulated at the deadenylation step by a protein that recruits poly(A) nuclease(s) to the 3' poly(A) tail-PABP complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells infected with MuSVts110 express a viral RNA which contains an inherent conditional defect in RNA splicing. It has been shown previously that splicing of the MuSVts110 primary transcript is essential to morphological transformation of 6m2 cells in vitro. A growth temperature of 33$\sp\circ$C is permissive for viral RNA splicing,and, consequently, 6m2 cells appear morphologically transformed at this temperature. However, 6m2 cells appear phenotypically normal when incubated at 39$\sp\circ$C, the non-permissive temperature for viral RNA splicing.^ After a shift from 39$\sp\circ$C to 33$\sp\circ$C, the coordinate splicing of previously synthesized and newly transcribed MuSVts110 RNA was achieved. By S1 nuclease analysis of total RNA isolated at various times, 5$\sp\prime$ splice site cleavage of the MuSVts110 transcript appeared to occur 60 minutes after the shift to 33$\sp\circ$C, and 30 minutes prior to detectable exon ligation. In addition, consistent with the permissive temperatures and the kinetic timeframe of viral RNA splicing after a shift to 33$\sp\circ$C, four temperature sensitive blockades to primer extension were identified 26-75 bases upstream of the 3$\sp\prime$ splice site. These blockades likely reflect four branchpoint sequences utilized in the formation of MuSVts110 lariat splicing-intermediates.^ The 54-5A4 cell line is a spontaneous revertant of 6m2 cells and appears transformed at all growth temperatures. Primer extension sequence analysis has shown that a five base deletion occurred at the 3$\sp\prime$ splice site in MuSVts110 RNA allowing the expression of a viral transforming protein in 54-5A4 in the absence of RNA splicing, whereas in the parental 6m2 cell line, a splicing event is necessary to generate a similar transforming protein. As a consequence of this deletion, splicing cannot occur and the formation of the four MuSVts110 branched-intermediates were not observed at any temperature in 54-5A4 cells. However, 5$\sp\prime$ splice site cleavage was still detected at 33$\sp\circ$C.^ Finally, we have investigated the role of the 1488 bp deletion which occurred in the generation of MuSVts110 in the activation of temperature sensitive viral RNA splicing. This deletion appears solely responsible for splice site activation. Whether intron size is the crucial factor in MuSVts110 RNA splicing or whether inhibitory sequences were removed by the deletion is currently unknown. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ca$\sp{++}$/calmodulin-dependent protein kinase II (CaM-KII) is highly concentrated in mammalian brain, comprising as much as 2% of the total protein in some regions. In forebrain, CaM-KII has been shown to be enriched in postsynaptic structures where it has been implicated in maintaining cytoskeletal structure, and more recently in signal transduction mechanisms and processes underlying learning and memory. CaM-KII appears to exist as a holoenzyme composed of two related yet distinct subunits, alpha and beta. The ratio of the subunits in the holoenzyme varies with different brain regions and to some degree with subcellular fractions. The two subunits also display distinct developmental profiles. Levels of alpha subunit are not evident at birth but increase dramatically during postnatal development, while levels of beta subunit are readily detected at birth and only gradual increase postnatally. The distinct regional, subcellular and developmental distribution of the two subunits of CaM-KII have prompted us to examine factors involved in regulating the synthesis of the subunit proteins.^ This dissertation addresses the regional and developmental expression of the mRNAs for the individual subunits using in situ hybridization histochemistry and northern slot-blot analysis. By comparing the developmental profile of each mRNA with that of its respective protein, we have determined that initiation of gene transcription is likely the primary site for regulating CaM-KII protein levels. Furthermore, the distinct cytoarchitecture of the hippocampus has allowed us to demonstrate that the alpha, but not beta subunit mRNA is localized in dendrites of certain forebrain neurons. The localization of alpha subunit mRNA at postsynaptic structures, in concert with the accumulation of subunit protein, suggests that dendritic synthesis of CaM-KII alpha subunit may be important for maintaining postsynaptic structure and/or function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a family of muscle-specific regulatory factors that includes myogenin, myoD, myf-5, and MRF-4 has been identified. They share a high degree of homology within a region that contains a basic and helix-loop-helix domain. Transfection of many non-muscle cell types with any one of these genes results in the activation of the entire myogenic program. To explore the mechanism through which myogenin regulates myogenesis, we have prepared antibodies against peptides specific to myogenin. Using these antibodies we show that myogenin is a 32 Kd phospho-protein which is localized to the nuclei of muscle cells. In vitro, myogenin oligomerizes with the ubiquitous enhancer binding factor E12, and acquires high affinity for an element of the core of the muscle creatine kinase (MCK) enhancer that is conserved among many muscle-specific genes. Myogenin synthesized in BC$\sb3$H1 and C2 muscle cell lines also binds to the same site in the enhancer. However, the MCK enhancer is not activated in 10T1/2 fibroblasts which have been transfected with a constitutive myogenin expression vector until growth factors have been removed from the media. This result indicates that mitogenic signals block the actions of myogenin.. Mutagenesis of the myogenin/E12 binding site in the MCK enhancer abolishes binding of the hetero-oligomer and prevents trans-activation of the enhancer by myogenin. By site directed mutagenesis of myogenin we have shown that the basic region consists of three clusters of basic residues, two of which are required for binding and activation of the myogenic program. Myogenic activation, but not DNA binding, is lost when the 10 residue region between the two required basic clusters is substituted with the corresponding region from E12, which also contains a similar basic and helix-loop-helix domain. Functional revertants of this substitution mutant have identified two amino acids which confer muscle specificity. The properties of myogenin suggest that it functions as a sequence-specific DNA binding factor that interacts directly with muscle-specific genes during myogenesis and contains within its basic domain a region which imparts myogenic activation and is separable from DNA binding. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous experiments had shown no differences in desensitization in cells with mutations of the adenylyl cyclase or the cAMP-dependent protein kinase and had ruled out this kinase as a mediator of desensitization; however, the assays of adenylyl cyclase had been made at high concentrations of free magnesium. The work presented in this dissertation documents a role for cAMP-dependent protein kinase which became apparent with assays at low concentrations of free magnesium. (1) The adenylyl cyclase in membranes from wild type S49 lymphoma cells showed substantial desensitization after incubation of the intact cells with low concentrations of epinephrine (5-20 nM). This desensitization was heterologous, that is it reduced the subsequent responses of the adenylyl cyclase to both epinephrine and prostaglandin-E$\sb1$. (2) The adenylyl cyclase in membranes of S49 cyc$\sp-$ cells, which do not make cAMP in response to hormones, and S49 kin$\sp-$ cells, which lack cAMP-dependent protein kinase activity, showed no heterologous desensitization following incubation of the intact cells with low concentrations of hormones. (3) Heterologous desensitization of the adenylyl cyclase was induced by incubations of wild type cells with forskolin, which activates the adenylyl cyclase downstream of the hormone receptors, or dibutyryl-cAMP, which activates the cAMP-dependent protein kinase directly. (4) Site-directed mutagenesis was used to delete the cAMP-dependent protein kinase consensus phosphorylation sequences on the $\beta$-adrenergic receptor. Heterologous desensitization occurred in intact L-cells expressing the wild type receptor or the receptor lacking the C-terminal phosphorylation site; however, only homologous desensitization occurred when the phosphorylation site on the third intracellular loop of the receptor was deleted. (5) To test directly the effects of cAMP-dependent protein kinase on the adenylyl cyclase the catalytic subunit of the kinase was purified from bovine heart and incubated with adenylyl cyclase in plasma membrane preparations. In this cell-free system the kinase caused rapid heterlogous reductions of the responsiveness of the S49 wild type adenylyl cyclase. Additionally, the adenylyl cyclase in kin$\sp-$ membranes, which showed only homologous desensitization in the intact cell, was desensitization by cell-free incubation with the kinase.^ The epinephrine responsiveness was not affected in L-cell membranes expressing the $\beta$-adrenergic receptor lacking the cAMP-dependent protein kinase consensus sequence on the third intracellular loop. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Spec genes serve as molecular markers for examining the ontogeny of the aboral ectoderm lineage of sea urchin embryos. These genes are activated at late-cleavage stage only in cells contributing to the aboral ectoderm of Strongylocentrotus purpuratus and encode 14,000-17,000 Da calcium-binding proteins. A comparative analysis was undertaken to better understand the mechanisms underlying the activation and function of the Spec genes by investigating Spec homologues from Lytechinus pictus, a distantly related sea urchin. Spec antibodies cross-reacted with 34,000 Da proteins in L. pictus embryos that displayed a similar ontogenetic pattern to that of Spec proteins. One cDNA clone, LpS1, was isolated by hybridization to a synthetic oligonucleotide corresponding to a calcium-binding domain or EF-hand. The LpS1 mRNA has developmental properties similar to those of the Spec mRNAs. LpS1 encodes a 34,000 Da protein containing eight EF-hand domains, which share structural homology with the Spec EF-hands; however, little else in the protein sequence is conserved, implying that calcium-binding is important for Spec protein function. Genomic DNA blot analysis showed two LpS1 genes, LpS1$\alpha$ and LpS1$\beta$, in L. pictus. Partial gene structures for both LpS1$\alpha$ and $\beta$ were constructed based on genomic clones isolated from an L. pictus genomic library. These revealed internal duplications of the LpS1 genes that accounted for the eight EF-hand domains in the LpS1 proteins. Sequencing analysis showed there was little in common among the 5$\sp\prime$-flanking regions of the LpS1 and Spec genes except for the presence of a binding site for the transcription factor USF.^ A sea urchin gene-transfer expression system showed that 762 base pairs (bp) of 5$\sp\prime$-flanking DNA from the LpS1$\beta$ gene were sufficient for correct temporal and spatial expression of reporter genes in sea urchin embryos. Deletions at the 5$\sp\prime$ end to 511, 368, or 108bp resulted in a 3-4 fold decrease in chloramphenicol acetyltransferase (CAT) activity and disrupted the restricted activation of the lac Z gene in aboral ectoderm cells.^ A full-length Spec1 protein and a truncated LpS1 protein were induced and partially purified from an in vitro expression system. (Abstract shortened with permission of author.) ^