4 resultados para Muscle proteins.

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: We evaluated ankyrin repeat domain 1 (ANKRD1), the gene encoding cardiac ankyrin repeat protein (CARP), as a novel candidate gene for dilated cardiomyopathy (DCM) through mutation analysis of a cohort of familial or idiopathic DCM patients, based on the hypothesis that inherited dysfunction of mechanical stretch-based signaling is present in a subset of DCM patients. BACKGROUND: CARP, a transcription coinhibitor, is a member of the titin-N2A mechanosensory complex and translocates to the nucleus in response to stretch. It is up-regulated in cardiac failure and hypertrophy and represses expression of sarcomeric proteins. Its overexpression results in contractile dysfunction. METHODS: In all, 208 DCM patients were screened for mutations/variants in the coding region of ANKRD1 using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct deoxyribonucleic acid sequencing. In vitro functional analyses of the mutation were performed using yeast 2-hybrid assays and investigating the effect on stretch-mediated gene expression in myoblastoid cell lines using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS: Three missense heterozygous ANKRD1 mutations (P105S, V107L, and M184I) were identified in 4 DCM patients. The M184I mutation results in loss of CARP binding with Talin 1 and FHL2, and the P105S mutation in loss of Talin 1 binding. Intracellular localization of mutant CARP proteins is not altered. The mutations result in differential stretch-induced gene expression compared with wild-type CARP. CONCLUSIONS: ANKRD1 is a novel DCM gene, with mutations present in 1.9% of DCM patients. The ANKRD1 mutations may cause DCM as a result of disruption of the normal cardiac stretch-based signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle differentiation involves sequential events in which proliferating undifferentiated myoblasts withdraw from the cell cycle and fuse to form multinucleated myotubes. The process of fusion is accompanied by the disappearance of proteins associated with cell proliferation and the coordinate induction of a battery of muscle-specific gene products, which includes the muscle isoenzyme of creatine kinase, nicotinic acetylcholine receptor, and contractile proteins such as alpha-actin. The molecular events associated with myogenesis are particularly amenable to experimental analysis because the events which occur in vivo can be recapitulated in vitro using established muscle cell lines. Initiation of myogenic differentiation in vitro can be achieved by removing serum from the culture medium. Myogenesis, therefore, can be considered to be regulated through a repression-type of mechanism by components in serum. The objectives of this project were to identify the components involved in regulation of myogenesis and approach the mechanism(s) whereby these components achieve their regulatory function. Initially, the effects of a series of polypeptide growth factors on myogenesis were examined. Among them TGF$\beta$ and FGF were found to be potent inhibitors of myogenic differentiation which did not affect cell proliferation. The inhibitory effects of these growth factors on differentiation requires their persistent presence in the culture medium. After myoblasts have undergone fusion, they become refractory to the inhibitory effects of TGF$\beta$, FGF, and serum. When fusion is inhibited by the presence of EGTA, a Ca$\sp{2+}$ chelator, muscle-specific genes are expressed reversibly upon removal of inhibitory growth factors. Subsequent exposure of biochemically differentiated cells to serum or TGF$\beta$ leads to down-regulation of muscle-specific genes. Stimulation with serum also leads to reentry of myocytes into the cell cycle, whereas fused myotubes are irreversibly and terminally differentiated. Measurement of levels of TGF$\beta$ receptors reveals that under non-fusing conditions, TGF$\beta$ receptor levels in biochemically differentiated myocytes remained as high as in undifferentiated myoblasts, while during terminal differentiation, TGF$\beta$ receptors decreased at least five-fold. Thus, down-regulation of TGF$\beta$ receptors is coupled to irreversible differentiation, but not reversible differentiation in the absence of fusion. The possible involvement of second messenger systems, such as cAMP and protein kinase C, in the pathway(s) by which TGF$\beta$, FGF, or serum factors transduce their signals from the cell surface to the nucleus was also examined. The results showed that myogenic differentiation is subject to negative regulation through cAMP elevation-dependent and cAMP elevation-independent pathways and that serum mitogens, TGF$\beta$ and FGF inhibit differentiation through a mechanism independent of cAMP-elevation or protein kinase C activation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contents of this dissertation include studies on the mechanisms by which FGF and growth factor down-stream kinases inactivate myogenin; characterization of myogenin phosphorylation and its role in regulation of myogenin activity; analysis the C-terminal transcriptional activation domain of myogenin; studies on the nuclear localization of myogenin and characterization of proteins that interact with PKC.^ Activation of muscle transcription by the MyoD family requires their heterodimerization with ubiquitous bHLH proteins such as the E2A gene products E12 and E47. I have shown that dimerization with E2A products potentiates phosphorylation of myogenin at serine 43 in its amino-terminus and serine 170 in the carboxyl-terminal transcription activation domains. Mutations of these sites resulted in enhanced transcriptional activity of myogenin, suggesting that their phosphorylation diminishes myogenin's transcriptional activity. Consistent with the role of phosphorylation at serine 170, analysis of the carboxyl-terminal transcriptional activation domain by deletion has revealed a stretch of residues from 157 to 170 which functions as a negative element for myogenin activity.^ In addition to inducing phosphorylation of myogenin, E12 also localizes myogenin to the nucleus. The DNA binding and dimerization mutants of myogenin show various deficiencies in nuclear localization. Cotransfection of E12 with the DNA binding mutants, but not a dimerization mutant, greatly enhances their nuclear binding. These data suggest that the nuclear localization signal is located in the DNA binding region and myogenin can also be nuclear localized by virtue of dimerizing with a nuclear protein.^ FGF is one of the most potent inhibitors of myogenesis and activates many down-stream pathways to exert its functions. One of these pathway is the MAP kinase pathway. Studies have shown that Raf-1 and Erk-1 kinase inactivate transactivation by myogenin and E proteins independent of DNA binding. The other is the PKC pathway. In transfected cells, FGF induces phosphorylation of thr-87 that maps to the previously identified PKC sites in the DNA binding domain of myogenin. Myogenin mutant T-N87 could resist the inhibition directed to the bHLH domain by FGF, suggesting that FGF inactivates myogenin by inducing phosphorylation of this site. In C2 myotubes, where FGF receptors are lost, the phosphatase inhibitor, okadaic acid, and phorbal ester PdBu, can also induce the phosphorylation of thr-87. This result supports the previous observation and suggests that in myotubes, other mechanisms, such as innervation, may inactivate myogenin through PKC induced phosphorylation.^ Many functions of PKC have been well documented, yet, little is known about the activators or effectors of PKC or proteins that mediate PKC nuclear localizations. Identification of PKC binding proteins will help to understand the molecular mechanism of PKC function. Two proteins that interact with the C kinase (PICKS) have been characterized, PICK-1 and PICK-2. PICK1 interacts with two conserved regions in the catalytic domain of PKC. It is localized to the perinuclear region and is phosphorylated in response to PKC activation. PICK2 is a novel protein with homology to the heat shock protein family. It interacts extensively with the catalytic domain of PKC and is localized in the cytoplasm in a punctate pattern. PICK1 and PICK2 may play important roles in mediating the actions of PKC. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenylyl cyclase (AC) converts ATP into cAMP, which activates protein kinase A (PKA). Activation of PKA leads to the phosphorylation of specific substrates. The mechanism of specificity of PKA phosphorylation baffled researchers for many years. The discovery of A Kinase Anchoring Proteins (AKAPs) has helped to unravel this mystery. AKAPs function to target PKA to specific regions within the cell. They also anchor other enzymes, receptors, or channels leading to tightly regulated signaling modules. Several studies have suggested an important role for activated PKA in these complexes, including the AKAPs yotiao and muscle AKAP (mAKAP). Yotiao, a plasma membrane AKAP, anchors PP1, NMDA receptors, IP3 receptors, and heart potassium channel subunit KCNQI. PKA phosphorylation of NMDA receptors as well as KCNQI leads to increased channel activity. Patients with mutations in KCNQI or yotiao that cause loss of targeting of KCNQI develop long QT syndrome, which can be fatal. mAKAP anchors several CAMP/PKA-regulated pathways to the nuclear envelope in cardiac myocytes. The necessity of activated PKA in these complexes led to the hypothesis that AC is also anchored. The results indicate that AC does associate with yotiao in brain and heart, specifically with AC types I-III, and IX. Co-expression of AC II or III with yotiao leads to inhibition of each isoform's activity. Binding assays revealed that yotiao binds to the N-terminus of AC II and that this region can reverse the inhibition of AC II, but not AC III, indicating unique binding sites on yotiao. AC II binds directly to as 808-957 of yotiao. Y808-957 acts as a dominant negative as the addition of it to rat brain membranes results in a ∼40% increase in AC activity. Additionally, AC was also found to associate with mAKAP in heart, specifically with AC types II and V. The binding site of AC was mapped to 275-340 of mAKAP, while mAKAP binds to the soluble domains of AC V as a complex. These results indicate that interactions between AC and AKAPs are specific and that AC plays an important role in AKAP-targeted signaling. ^