20 resultados para Metabolite
em DigitalCommons@The Texas Medical Center
Resumo:
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.
Resumo:
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.
Resumo:
Cyclosporine (CsA) has shown great benefit to organ transplant recipients, as an immunosuppressive drug. To optimize CsA immunosuppressive therapy, pharmacodynamic evaluation of serial patient serum samples after CsA administration, using mixed lymphocyte culture (MLC) assays, revealed in vitro serum immunosuppressive activity of a CsA-like, ether-extractable component, associated with good clinical outcome in vivo. Since the in vitro immunosuppressive CsA metabolites, M-17 and M-1, are erythrocyte-bound, the immunosuppressive activity demonstrated in patient serum suggests that other immunosuppressive metabolites need exist. To test this hypothesis and obtain CsA metabolites for study, ether-extracted bile from tritiated and nonradioactive CsA-treated pigs was processed by novel high performance liquid and thin-layer chromatography (HPLC and HPTLC) techniques. Initial MLC screening of potential metabolites revealed a component, designated M-E, to have immunosuppressive activity. Pig bile-derived M-E was characterized as a CsA metabolite, by radioactive CsA tracer studies, by 56% crossreactivity in CsA radioimmunoassay, and by mass spectrometric (MS) analysis. MS revealed a CsA ring structure, hydroxylated at a site other than at amino acid one. M-E was different than M-1 and M-17, as demonstrated by different retention properties for each metabolite, using HPTLC and a novel rhodamine B/ $\alpha$-cyclodextrin stain, and using HPLC, performed by Sandoz, that revealed M-E to be different than previously characterized metabolites. The immunosuppressive activity of M-E was quantified by determination of mean metabolite potency ratio in human MLC assays, which was found to be 0.79 $\pm$ 0.23 (CsA, 1.0). Similar to parent drug, M-E revealed inter-individual differences in its immunosuppressive activity. M-E demonstrates inhibition of IL-2 production by concanavalin A stimulated C3H mouse spleen cells, similar to CsA, as determined with an IL-2 dependent mouse cytotoxic T-cell line. ^
Resumo:
Vitamin A and its metabolite retinoic acid (RA) are essential elements for normal lung development and the differentiation of lung epithelial cells. We previously showed that RA rapidly activated cyclic AMP response element-binding protein (CREB) in a nonclassical manner in normal human tracheobronchial epithelial (NHTBE) cells. In the present study, we further demonstrated that this nonclassical signaling of RA on the activation of CREB plays a critical role in regulating the expression of airway epithelial cell differentiation markers, the MUC2, MUC5AC, and MUC5B genes. We found that RA rapidly activates the protein kinase Calpha isozyme and transmits the activation signal to CREB via the Raf/MEK/extracellular signal-regulated kinase/p90 ribosomal S6 kinase (RSK) pathway. Activated RSK translocated from the cytoplasm to the nucleus, where it phosphorylates CREB. Activated CREB then binds to a cis-acting replication element motif on the promoter (at nucleotides [nt] -878 to -871) of the MUC5AC gene. The depletion of CREB using small interfering RNA abolished not only the RA-induced MUC5AC but also RA-induced MUC2 and MUC5B. Taken together, our findings demonstrate that CREB activation via this nonclassical RA signaling pathway may play an important role in regulating the expression of mucin genes and mediating the early biological effects of RA during normal mucous differentiation in NHTBE cells.
Resumo:
Antiangiogenesis is a promising anti-tumor strategy through inhibition tumor vascularformation to suppress tumor growth. Targeting specific VEGF/R has been showntherapeutic benefits in many cancer types and become a first approvedantiangiogenic modalities by Food and Drug Administration (FDA) in United States.However, interruption of homeostasis in normal tissues that is likely due to theinhibition of VEGF/R signaling pathway induces unfavorable side effects. Moreover,cytostatic nature of antiangiogenic drugs frequently causes less tumor cell specifickilling activity, and cancer cells escaped from cell death induced by these drugseven gain more malignant phenotypes, resulting in tumor invasion and metastasis.To overcome these issues, we developed a novel anti-tumor therapeutic EndoCDfusion protein which linked endostatin (Endo) to cytosine deaminase-uracilvphosphoribosyl transferase (CD). Endo targets unique tumor endothelial cells toprovide tumor-specific antiangiogenesis activity and also carries CD to the localtumor area, where it serves nontoxic prodrug 5-fluorocytosine (5-FC) enzymaticconversion reaction to anti-metabolite chemotherapy drug 5-fluorouracil (5-FU). Wedemonstrated that 5-FU concentration was highly increased in tumor sites, resultingin high level of endothelial cells and tumor cells cytotoxic efficacy. Furthermore,EndoCD/5-FC therapy decreased tumor growth and colorectal liver metastasisincident compared with bevacizumab/5-FU treatment in human breast and colorectalliver metastasis orthotropic animal models. In cardiotoxicity safety profile,EndoCD/5-FC is a contrast to bevacizumab/5-FU; lower risk of cardiotoxicityinduction or heart function failure was found in EndoCD/5-FC treatment thanbevacizumab/5-FU does in mice. EndoCD/5-FC showed more potent therapeuticefficacy with high safety profile and provided stronger tumor invasion or metastasisinhibition than antiangiogenic drugs. Together, EndoCD fusion protein with 5-FCshowed dual tumor targeting activities including antiangiogenesis and tumor localchemotherapy, and it could serve as an alternative option for antiangiogenic therapy.
Resumo:
Studies to elucidate the function of vitamin D have demonstrated an important role in regulating bone-related cells, including osteoblasts and osteoclasts. A seemingly paradoxical observation is that 1,25(OH)$\sb2$D$\sb3$, the active metabolite of vitamin D, stimulates bone resorption, yet regulates transcription of genes expressed by osteoblasts. One mechanism that could explain these actions is the upregulation of transcription of osteoblast-specific genes. These gene products could then act as effectors to influence osteoclastic activity. We hypothesized that molecular signals could be deposited directly into the mineralized matrix in the form of noncollagenous proteins, such as osteopontin (OPN). The structure, biosynthesis and localization of OPN suggest that it could function to mediate the molecular "cross talk" between osteoblasts and osteoclasts in response to 1,25(OH)$\sb2$D$\sb3$. To begin to address this hypothesis, elucidation of the molecular mechanisms of action involved in the transactivation of OPN by 1,25(OH)$\sb2$D$\sb3$ is essential.^ In the present study, the rat opn gene was isolated and characterized. Functional analysis by transient transfection of the 5$\sp\prime$ flanking sequences of the rat opn gene fused to the luciferase gene demonstrated that OPN is transcriptionally upregulated by 1,25(OH)$\sb2$D$\sb3$, mediated through two vitamin D response elements (VDRE). Both proximal and distal VDREs are structurally similar (two imperfect direct repeats separated by a 3 nucleotide spacer) and bind protein complexes that include the VDR and retinoid-X receptor (RXR). Isolated VDRE expression constructs produce functional activity of equivalent magnitude of responsiveness to 1,25(OH)$\sb2$D$\sb3$. However, expression constructs containing either VDRE and at least 200 bp of 5$\sp\prime$ and 3$\sp\prime$ flanking sequence demonstrated that the distal VDRE produces an amplitude of response significantly higher than the proximal VDRE. We conclude that the transcriptional upregulation of the opn gene by 1,25(OH)$\sb2$D$\sb3$ involves the transactivation of two VDREs, while maximal responsiveness requires interaction of the VDREs with additional cis-elements contained in the 5$\sp\prime$ sequence. ^
Resumo:
Modulation of tumor hypoxia to increase bioreductive drug antitumor activity was investigated. The antivascular agent 5,6-dimethylxanthenone acetic acid (DMXAA) was used in combination studies with the bioreductive drugs Tirapazamine (TPZ) and Mitomycin C (MMC). Blood perfusion studies with DMXAA showed a maximal reduction of 66% in tumor blood flow 4 hours post drug administration. This tumor specific decrease in perfusion was also found to be dose-dependent, with 25 and 30 mg/kg DMXAA yielding greater than 50% reduction in tumor blood flow. Increases in antitumor activity with combination therapy (bioreductive drugs $+$ DMXAA) were significant over individual therapies, suggesting an increased activity due to increased hypoxia induced by DMXAA. Combination studies yielded the following significant tumor growth delays over control: MMC (5mg/kg) $+$ DMXAA (25mg/kg) = 20 days, MMC (2.5mg/kg) $+$ DMXAA (25 mg/kg) = 8 days, TPZ (21.4mg/kg) $+$ DMXAA (17.5mg/kg) = 4 days. The mechanism of interaction of these drugs was investigated by measuring metabolite production and DNA damage. 'Real time' microdialysis studies indicated maximal metabolite production at 20-30 minutes post injection for individual and combination therapies. DNA double strand breaks induced by TPZ $\pm$ DMXAA (20 minutes post injection) were analyzed by pulsed field gel electrophoresis (PFGE). Southern blot analyses and quantification showed TPZ induced DNA double strand breaks, but this effect was not evident in combination studies with DMXAA. Based on these data, combination studies of TPZ $+$ DMXAA showed increased antitumor activity over individual drug therapies. The mechanism of this increased activity, however, does not appear to be due to an increase in TPZ bioreduction at this time point. ^
Resumo:
1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] exerts pleiotropic effects on osteoblasts via both long-term nuclear receptor-mediated and rapid membrane-initiated pathways during bone remodeling and mineral homeostasis. This study explored the membrane transducers that mediate rapid effects of 1,25(OH)2D3 on osteoblasts, including sphingomyelinase (SMase) and L-type voltage sensitive calcium channels (VSCCs). ^ It was previously demonstrated that 1,25(OH)2D3 stimulates transmembrane influx of Ca2+ through VSCCs in ROS 17/2.8 osteoblasts, however the molecular identity of 1,25(OH)2D 3-regulated VSCC has not been known. In this study, on the basis of in vitro tests of three unique ribozymes specifically cleaving a1C mRNA, I transfected ROS 17/2.8 cells with vectors coding recombinant ribozyme modified with U1 snRNA structure, and successfully selected stable clonal cells in which the expression of a1C was strikingly reduced. Ca2+ influx studies in these cells compared to control transfectants showed selective attenuation of depolarization- and 1,25(OH)2D3-regulated Ca2+ responses. These results allow us to conclude that the cardiac ( a1C ) subtype of the L-type VSCC is the major membrane transducer of Ca 2+ influx in osteoblasts. ^ I also demonstrated that 1,25(OH)2D3 induces a rapid hydrolysis of membrane sphingomyelin (SM) in ROS 17/2.8 cells, with the concomitant generation of ceramide, detectable at 15 minute, and maximal at 1 hour after addition. Sphingosine, sphingosine-1-phosphate (SPP) and sphingosylphosphorylcholine (SPC), downstream products of SM hydrolysis, but not ceramide, elicit Ca 2+ release from intracellular stores. Considering ceramide, sphingosine, and SPP as second messengers modulating intracellular kinases or phosphatases, these findings implicate sphingolipid-signaling pathways in transducing rapid effects of 1,25(OH)2D3 on osteoblasts. In structure/function analyses of sphingolipid signaling, it was observed that psychosine elicits Ca2+ release from intracellular stores. This challenges the dogma that sphingosine phosphorylation permits mobilization of Ca2+ , because psychosine is a sphingosine analog galactosylated at 1-carbon, preventing phosphorylation at that site. Psychosine is the pathological metabolite found in patients with Krabbe's disease, suggesting that psychosine disrupts the physiological sphingolipid signaling by chronic release of Ca2+ from intracellular stores. ^ Slower SM turnover than Ca2+ influx through VSCCs in response to 1,25(OH)2D3 demonstrates ceramide does not mediate the 1,25(OH)2D3-induced Ca2+ signaling, a conclusion endorsed further by the failure of ceramide to induce Ca 2+ signaling. ^
Resumo:
Colon cancer is the second leading cause of cancer mortality in the U.S. Surgery is the only truly effective human colon cancer (HCC) therapy due to marked intrinsic drug resistance. The inefficacy of therapies developed for metastatic HCC suggests that advances in colon cancer chemoprevention and chemotherapy will be needed to reduce HCC mortality. The dietary fiber metabolite butyrate (NaB) is a candidate cancer chemopreventive agent that inhibits growth, promotes differentiation and stimulates apoptosis of HCC cells. Epidemiological and experimental studies suggest that dietary fiber protects against the development of HCC, however, recent large prospective trials have not found significant protection. ^ The first central hypothesis of this dissertation project is that the diversity of phenotypic changes induced by NaB in HCC cells includes molecular alterations that oppose its chemopreventive action and thereby limit its efficacy. We investigated the effect of NaB on the expression/activity of epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) in HCC HT29 cells. NaB treatment induced a 13-fold increase in EGFR expression in concert with its chemopreventive action in vitro, i.e., induction of growth suppression and G1 arrest, apoptosis and a differentiated phenotype. NaB-induced EGFR was active based on multiple lines of evidence. The EGFR was: (1) heavily phosphorylated at Tyrosine (P-Tyr); (2) associated with the cytoskeleton; (3) localized at the cell surface, and activated in response to EGF; and (4) NaB treatment of the cells induced activation of the EGFR effector Erk1/2. NaB treatment also induced a 7-fold increase in COX-2 expression. The NaB-induced COX-2 was active based on significantly increased PGE2 production. ^ The second central hypothesis is that NaB treatment would render HCC cells more chemosensitive to chemotherapy agents based on the increased apoptotic index induced by NaB. NaB treatment chemosensitized HT29 cells to 5-FU and doxorubicin, despite increases in the expression of P-glycoprotein and a related drug resistance protein (MRP). ^ These results raise the intriguing possibility that the chemopreventive effects of fiber may require concomitant treatment with EGFR and/or COX-2 inhibitors. Similarly, NaB may be a rational drug to combine with existing chemotherapeutic agents for the management of advanced HCC patients. ^
Resumo:
The role of the cytochrome (CYT) P-450 mixed-function oxidase (MFO) in the biotransformation of hexachlorobenzene (HCB) was investigated, since in vivo interaction between this enzyme and chemical is very probable. HCB is a type I substrate with (Fe('3+)) CYT P-450 isozymes present in untreated, b-naphthoflavone (BNF) and phenobarbital (PB) induced rat liver microsomes. HCB dependent and saturable type I binding titrations yield spectral dissociation constants (K(,s)) of 180 and 83 uM for the isozymes present in untreated and PB induced microsomes, respectively. Purified CYT P-450b, the major isozyme induced by PB, produces HCB dependent and saturable type I spectra with a K(,s) of 0.38 uM.^ CYT P-450 mediated reductive dehalogenation occurs in microsomes and purified/reconstituted MFO systems and produces pentachlorobenzene (PCB) as the initial and major metabolite under both aerobic and anaerobic conditions. In microsomal reactions secondary metabolism of PCB occurs in the presence of oxygen. Pentachlorophenol (PCP) is produced only in aerobic reactions with PB induced microsomes with a concomitant decrease in PCB production. PCP is not detected in aerobic reactions with BNF induced microsomes, although PCB production is decreased compared to anaerobic conditions. A reaction scheme for the production of phenolic metabolities from PCB is deduced.^ CYT P-450 dependent and NADPH independent modes of PCB production occur with purified/reconstituted MFO systems and are consistent with dehalogenation pathways observed with microsomal experiments. The NADPH independent production of PCB requires native microsomal or purified MFO protein components and may be the result of nucleophilic displacement of a chlorine atom from HCB mediated or coupled with redox active functions (primary, secondary, tertiary and quarternary structures) of the proteins. CYT P-450 dependent production of PCB from HCB is isozyme dependent: CYT P-450c = CYT P-450d > CYT P-450a > CYT 450b. The low apparent specific activity may be due to non-optimal reconstitution conditions (e.g., isozyme choice and requirement of other microsomal elecron transport components) and secondary metabolism of PCB and the phenols derived from PCB. CYT P-450 mediated dehalogenation may be catalyzed through attack, by the iron oxene (postulated intermediate of CYT P-450 monooxygenations), at the chlorines of HCB instead of the aromatic nucleus. (Abstract shortened with permission of author.) ^
Resumo:
The biochemical determinants of cytotoxicity of the purine nucleoside analog, 9-(beta)-D-xylofuranosyladenine (xyl-A) were studied in wild-type Chinese hamster ovary cells and in nucleoside kinase deficient mutants. It was found that {('3)H}xyl-A was readily phosphorylated to the triphosphate level in both the wild-type and deoxycytidine kinase deficient mutant, but not by the adenosine kinase deficient cells. Values for the apparent Km and Vmax of this uptake process were 43.9 (mu)M and 118.7 nmol/min/10('9) cells, respectively. Cloning procedures indicated that the viability of CHO cells was decreased 90 per cent by a 5-hr incubation with 10 (mu)M xyl-A. However, the toxicity of xyl-A was increased 100-fold by the addition of a nontoxic concentration (10 (mu)M) of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) to the medium. High-pressure liquid chromatographic analysis indicated that after 5 hr, the concentration of 9-(beta)-D-xylofuranosyladenine 5'-triphosphate (xyl-ATP) in cells incubated with xyl-A plus EHNA was 2.0 mM, four times greater than in those cells incubated with xyl-A alone. Incubation with xyl-A plus EHNA had no significant effect on the cellular concentrations of 5-phosphoribosyl-1-pyrophosphate after 1 hr whereas, treatment with 3'-dexoyadenosine (cordycepin) decreased the concentration of this metabolite. Determinations of the cellular nucleoside triphosphates indicated that under conditions that resulted in an intracellular accumulation of 500 (mu)M xyl-ATP, the endogenous concentrations of neither the ribonucleoside triphosphates nor deoxyribonucleoside triphosphates were significantly different from those of control cells. The ID(,50) for {('3)H}thymidine incorporation into DNA, 105 (mu)M xyl-ATP, was four-fold less than the ID(,50) for {('3)H}uridine incorporation into RNA suggesting that the process of DNA synthesis is more sensitive to the presence of xyl-ATP. When removed from exogenous xyl-A, CHO cells failed to recover their ability to synthesize RNA and DNA, although the intracellular xyl-ATP concentration decreased to less than 35 (mu)M. The selective inhibition of RNA synthesis by 6-azauridine did not prevent the expression of toxicity by xyl-ATP. However, the selective inhibition of DNA synthesis by ara-C significantly spared toxicity in cells that had accumulated an otherwise lethal concentration of xyl-ATP. It is shown that in cells which had accumulated 1.27 mM {('3)H}xyl-ATP, {('3)H}xyl-A was found to terminate cellular RNA chains at a frequency of 1.42 (mu)mol of {('3)H}xyl-A 3' termini per mol of mononucleotide. These results indicate that a general mechanism for the toxicity of xyl-A to CHO cells includes the cellular accumulation of xyl-ATP, which serves as a substrate for RNA synthesizing enzymes and subsequently is incorporated into nascent RNA transcripts as a chain terminator. A specific mechanism involving the premature termination of RNA primers required for the initiation of DNA synthesis is proposed to account for the inhibitory action of xyl-ATP on DNA synthesis. ^
Resumo:
The gerbil model of ischemia was used to determine the effect of carotid occlusion on energy metabolites in cellular layers of discrete regions of the hippocampus and dentate gyrus. Levels of glucose, glycogen, ATP and phosphocreatine (PCr) were unchanged after 1 minute of ischemia. However, 3 minutes of ischemia produced a dramatic decrease in net levels of all metabolites. No additional decrease was observed after 15 minutes of ischemia. Re-establishment of the blood flow for 5 minutes after a 15 minute ischemic episode returned all metabolites to pre-ischemia levels. Concentrations of glucose and glycogen were elevated in sham-operated animals as a function of the pentobarbital anesthetic employed. In other studies, elevated GABA levels (produced by inhibiting GABA-transaminase with (gamma)-vinyl-GABA (GVG)) were found to decrease the rate of utilization of the high-energy phosphate metabolites ATP and PCr in the mouse cortex. In addition, glucose and glycogen levels were increased. Thus, tonic inhibition by GABA produced decreased cellular activity. Additional experiments demonstrated the attenuation of ischemia-induced metabolite depletion in cellular layers of regions of the hippocampus, dentate gyrus and cortex after GVG administration. Under ether, 1 minute of bilateral carotid occlusion produced a dramatic decrease in metabolite levels. After GVG treatment, the decrease was blocked completely for glucose, glycogen and ATP, and partially for PCr. Therefore, GABA-transaminase inhibition produced increased levels of GABA which subsequently decreased cellular activity. The protection against ischemia may have been due to (a)decreased metabolic rate; the available energy stores were utilized at a slower rate, and (b)increased levels of energy substrates; additional supplies available to maintain viability. These data suggest that the functional state of neural tissue can determine the response to metabolic stress. ^
Resumo:
The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^
Resumo:
Inhibition of DNA repair by the nucleoside of fludarabine (F-ara-A) induces toxicity in quiescent human cells. The sensing and signaling mechanisms following DNA repair inhibition by F-ara-A are unknown. The central hypothesis of this project was that the mechanistic interaction of a DNA repair initiating agent and a nucleoside analog initiates an apoptotic signal in quiescent cells. The purpose of this research was to identify the sensing and signaling mechanism(s) that respond to DNA repair inhibition by F-ara-A. Lymphocytes were treated with F-ara-A, to accumulate the active triphosphate metabolite and subsequently DNA repair was activated by UV irradiation. Pre-incubation of lymphocytes with 3 μM F-ara-A inhibited DNA repair initiated by 2 J/m2 UV and induced greater than additive apoptosis after 24 h. Blocking the incorporation of F-ara-A nucleotide into repairing DNA using 30 μM aphidicolin considerably lowered the apoptotic response. ^ Wild-type quiescent cells showed a significant loss in viability than did cells lacking functional sensor kinase DNA-PKcs or p53 as measured by colony formation assays. The functional status of ATM did not appear to affect the apoptotic outcome. Immunoprecipitation studies showed an interaction between the catalytic sub-unit of DNA-PK and p53 following DNA repair inhibition. Confocal fluorescence microscopy studies have indicated the localization pattern of p53, DNA-PK and γ-H2AX in the nucleus following DNA damage. Foci formation by γ-H2AX was seen as an early event that is followed by interaction with DNA-PKcs. p53 serine-15 phosphorylation and accumulation were detected 2 h after treatment. Fas/Fas ligand expression increased significantly after repair inhibition and was dependent on the functional status of p53. Blocking the interaction between Fas and Fas ligand by neutralizing antibodies significantly rescued the apoptotic fraction of cells. ^ Collectively, these results suggest that incorporation of the nucleoside analog into repair patches is critical for cytotoxicity and that the DNA damage, while being sensed by DNA-PK, may induce apoptosis by a p53-mediated signaling mechanism. Based on the results, a model is proposed for the sensing of F-ara-A-induced DNA damage that includes γ-H2AX, DNA-PKcs, and p53. Targeting the cellular DNA repair mechanism can be a potential means of producing cytotoxicity in a quiescent population of neoplastic cells. These results also provide mechanistic support for the success of nucleoside analogs with cyclophosphamide or other agents that initiate excision repair processes, in the clinic. ^
Resumo:
The heparan sulfate (HS)-fibroblast growth factor (FGF) signaling system is a ubiquitous regulator that senses local environmental changes and mediates cell-to-cell communication. This system consists of three mutually interactive components. These are regulatory polypeptides (FGF), FGF receptor (FGFR) and heparan sulfate proteoglycans (FGFRHS). All four FGFR genes are expressed in the adult liver. Expression of the FGFR1–3 genes is generally associated with non-parenchymal cells while expression of the FGFR4 gene is associated with parenchymal hepatocytes. We showed that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (−/−) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7α-hydroxylase (Cyp7a), the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. These results indicated that FGFR4 was not directly involved in liver growth but exerted negative control on liver bile acid synthesis. This was confirmed in transgenic mice overexpressing the constitutively active human FGFR4 in livers. The transgenic mice exhibited decreased fecal bile acid excretion, bile acid pool size, and expression of Cyp7a. Introduction of this constitutively active human FGFR4 into FGFR4 (−/−) mice restored the inhibition of bile acid synthesis. Activation of the c-Jun N-terminal Kinase (JNK) pathway by FGFR4 correlated with the repressive effect on bile acid synthesis. ^ To determine whether FGFR4 played a broader role in liver-specific metabolic function, we examined the impact of both acute and chronic exposure to CCl 4 in FGFR4 (−/−) mice. Following acute CCl4 exposure, the FGFR4 (−/−) mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair, with no apparent effect on liver cell proliferation and restoration of cellularity. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4 (−/−) mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8 hr delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl 4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. ^ Of the 23 FGF polypeptides, FGF1 and FGF2 are present at significant levels in the liver. To determine whether FGF1 and FGF2 played a role in CCl 4-induced liver injury and fibrosis, we examined the impact of both acute and chronic exposure to CCl4 in both wild-type and FGF1-FGF2 double-knockout mice. Following acute CCl4 exposure, FGF1(−/−)FGF2(−/−) mice exhibited accelerated liver injury, overall normal liver growth and repair, and decreased liver collagen α1(I) induction. Liver fibrosis resulting from chronic CCl4 exposure was markedly decreased in livers of FGF1(−/−)FGF2(−/−) mice compared to wild-type mice. This study suggests a role for FGF1 and FGF2 in hepatic fibrogenesis. ^ In summary, our three part study shows that specific components of the ubiquitous HS-FGF signaling family in the liver context interfaces with metabolite- and xenobiotic-controlled networks to regulate liver function, but has no apparent direct effect on liver cell growth. ^