2 resultados para Massively parallel sequencing

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Metagenomic Study of the Tick Midgut Daniel Yuan, B.S. Supervisory Professor : Steven J. Norris, Ph.D. Southern tick–associated rash illness (STARI) or Master’s disease is a Lyme-like illness that occurs following bites by Amblyomma americanum, the lone-star tick. Clinical symptoms include a bull’s eye rash similar to the erythema migrans lesions of Lyme disease, as well as fever and joint pains. Lyme disease is caused by Borrelia burgdorferi and related spirochetes. However, B. burgdorferi has not been detected in STARI patients, or in ticks in the South Central U.S. The causative agent of STARI has not been identified, although it was once thought to be caused by another Borrelia species, Borrelia lonestari. Furthermore, while adult A. americanum have up to a 5.6% Borrelia lonestari infection rate, the prevalence of all Borrelia species in Texas ticks as a whole is not known. Previous studies indicate that 6%-30% of Northern Ixodes scapularis ticks are infected by Borrelia burgdorferi while only 10% of Northern A. americanum and I. scapularis ticks are infected by Borrelia species. The first specific aim of this project was to determine the bacterial community that inhabits the midgut of Texas and Northeastern ticks by using high throughput metagenomic sequencing to sequence bacterial 16S rDNA. Through the use of massively parallel 454 sequencing, we were able to individually sequence hundreds of thousands of 16S rDNA regions of the bacterial flora from 133 ticks from the New York, Missouri and Texas. The presence of previously confirmed endosymbionts, specifically the Rickettsia spp. and Coxiella spp., that are commonly found in ticks were confirmed, as well as some highly prevalent genera that were previously undocumented. Furthermore, multiple pathogenic genera sequences were often found in the same tick, suggesting the possibility of co-infection of multiple pathogenic species. The second specific aim was to use Borrelia specific primers to screen 344 individual ticks from Missouri, Texas and the Northeast to determine the prevalence of Borrelia species in ticks. To screen for Borrelia species, two housekeeping genes, uvrA and recG, were selected as well as the 16S-23S rDNA intergenic spacer. Ticks from Missouri, Texas and New York were screened. None of the Missouri or Texas ticks tested positive for Borrelia spp. The rate of I. scapularis infection by B.burgdorferi is dependent on tick feeding activity as well as reservoir availability. B. burgdorferi is endemic in the Northeast, sometimes reported as highly present in over 50% of all I. scapularis ticks. 11.6% of all New York ticks were positive for a species of Borrelia, however only 6.9% of all New York ticks were positive for B. burgdorferi. Despite being significantly lower than 50%, the results still fall in line with previous reports of about the prevalence of B. burgdorferi. 1.5% of all Texas ticks were positive for a Borrelia species, specifically B. lonestari. While this study was unable to identify the causative agent for STARI, 454 sequencing was able to provide a tremendous insight into the bacterial flora and possible pathogenic species of both the I. scapularis and the A. americanum tick.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Embryonic stem cells (ESCs) possess two unique characteristics: infinite self-renewal and the potential to differentiate into almost every cell type (pluripotency). Recently, global expression analyses of metastatic breast and lung cancers revealed an ESC-like expression program or signature, specifically for cancers that are mutant for p53 function. Surprisingly, although p53 is widely recognized as the guardian of the genome, due to its roles in cell cycle checkpoints, programmed cell death or senescence, relatively little is known about p53 functions in normal cells, especially in ESCs. My hypothesis is that p53 has specific transcription regulatory functions in human ESCs (hESCs) that a) oppose pluripotency and b) protect the stem cell genome in response to DNA damage and stress signaling. In mouse ESCs, these roles are believed to coincide, as p53 promotes differentiation in response to DNA damage, but this is unexplored in hESCs. To determine the biological roles of p53, specifically in hESCs, we mapped genome-wide chromatin interactions of p53 by chromatin immunoprecipitation and massively parallel tag sequencing (ChIP-Seq), and did so under three VIdifferent conditions of hESC status: pluripotency, differentiation-initiated and DNA-damage-induced. ChIP-Seq showed that p53 is enriched at distinct, induction-specific gene loci during each of these different conditions. Microarray gene expression analysis and functional annotation of the distinct p53-target genes revealed that p53 regulates specific genes encoding developmental regulators, which are expressed in differentiation-initiated but not DNA- damaged hESCs. We further discovered that, in response to differentiation signaling, p53 binds regions of chromatin that are repressed but also poised for rapid activation by core pluripotency factors OCT4 and NANOG in pluripotent hESCs. In response to DNA damage, genes associated with migration and motility are targeted by p53; whereas, the prime targets of p53 in control of cell death are conserved for p53 regulation in both differentiation and DNA damage. Our genome-wide profiling and bioinformatics analyses show that p53 occupies a special set of developmental regulatory genes during early differentiation of hESCs and functions in an induction-specific manner. In conclusion, our research unveiled previously unknown functions of p53 in ESC biology, which augments our understanding of one of the most deregulated proteins in human cancers.