15 resultados para IL-4

em DigitalCommons@The Texas Medical Center


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anti-Glomerular Basement Membrane Glomerulonephritis (anti-GBM GM) is one of the earliest described autoimmune disorders. Patients present with proteinuria, anti-GBM antibodies, and renal failure. Studies have implicated a T Helper 1 (TH1) response in disease induction and a T Helper 2 (TH2) response for disease progression. A 13 amino acid long peptide sequence spanning residues 28 through 40 [pCol(28–40)] of the Collagen IV α3 non-collagen domain (Col IV α3 NCD) is immunogenic and induces anti-GBM GN. In order to fully understand disease initiation, this peptide was further characterized. Peptides were created containing one amino acid substitution for the entire length of pCol(28–40) and induction of anti-GBM GN was monitored. When residues 31, 33, or 34 contained the substitution, anti-GBM GN was unable to be induced. Thus, residues 31, 33, and 34 of pCol(28–40) are required for induction of anti-GBM. Glomerular injury is observed as early as 14 days post anti-GBM GN induction. However, the presence of anti-GBM antibodies is not observed until 20 days post immunization. An enlarged lymph node adjacent to the diseased kidney exhibits B cell activation after renal injury and produces antibodies toward GBM. Thus, anti-GBM antibodies are a consequence of the initial renal injury. Differences between disease susceptible and disease resistant rat strains exist in the expression of IL-4Rα, a major player in the TH2 response. IL-4Rα signaling is regulated by soluble IL-4Rα (sIL-4Rα). Low expression levels of sIL-4Rα result in the stabilization of IL-4 binding, while elevated expression sequesters IL-4. Quantitative PCR experiments noted low siL-4Rα expression levels in disease susceptible rats. Induction of an immune response toward sIL-4Rα in this strain was responsible for delayed disease progression in 15 out of the 17 experimental animals. Antibody transfer and in vivo biological activity experiments confirmed that delayed disease development was due to anti-sIL-4Rα antibodies. Together these experiments indicate that a T-cell epitope is required for activation of a TH1 autoimmune response and anti-GBM antibodies are a consequence of renal injury. More importantly, a role for IL-4Rα signaling is implicated in the progression of anti-GBM GN. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Platelets represent one of the largest storage pools of angiogenic and oncogenic growth factors in the human body. The observation that thrombocytosis (platelet count >450,000/uL) occurs in patients with solid malignancies was made over 100 years ago. However, the clinical and biological implications as well as the underlying mechanism of paraneoplastic thrombocytosis associated with ovarian carcinoma remains unknown and were the focus of the current study. Following IRB approval, patient data were collected on 619 patients from 4 U.S. centers and used to test associations between platelet count at initial diagnosis, clinicopathologic factors, and outcome. In vitro effects of plasma-purified platelets on ovarian cancer cell proliferation, docetaxel-induced apoptosis, and migration were evaluated using BrdU-PI flow cytometric and two-chamber chemotaxis assays. In vivo effects of platelet depletion on tumor growth, proliferation, apoptosis, and angiogenesis were examined using an anti-platelet antibody (anti-mouse glycoprotein 1ba, Emfret) to reduce platelets by 50%. Complete blood counts and number of mature megakaryocytes in the spleen and bone marrow were compared between control mice and ovarian cancer-bearing mice. Plasma levels of key megakaryo- and thrombopoietic factors including thrombopoietin (TPO), IL-1a, IL-3, IL-4, IL-6, IL-11, G-CSF, GM-CSF, stem cell factor, and FLT-3 ligand were assayed in a subset of 150 patients at the time of initial diagnosis with advanced stage, high grade epithelial ovarian cancer using immunobead-based cytokine profiling coupled with the Luminex® xMAP platform. Plasma cytokines significantly associated with thrombocytosis in ovarian cancer patients were subsequently evaluated in mouse models of ovarian cancer using ELISA immunoassays. The results of human and mouse plasma cytokine profiling were used to inform subsequent in vivo studies evaluating the effect of siRNA-induced silencing of select megakaryo- and thrombopoietic cytokines on paraneoplastic thrombocytosis. Thirty-one percent of patients had thrombocytosis at initial diagnosis. Compared to patients with normal platelet counts, women with thrombocytosis were significantly more likely to have advanced stage disease (p<0.001) and poor median progression-free (0.94 vs 1.35 years, p<0.001) and overall survival (2.62 vs 4.65 years, p<0.001). On multivariate analysis, thrombocytosis remained an independent predictor of decreased overall survival. Our analysis revealed that thrombocytosis significantly increases the risk of VTE in ovarian cancer patients and that thrombocytosis is an independent predictor of increased mortality in women who do develop a blood clot. Platelets increased ovarian cancer cell proliferation and migration by 4.1- and 2.8-fold (p<0.01), respectively. Platelets reduced docetaxel-induced apoptosis in ovarian cancer cells by 2-fold (p<0.001). In vivo, platelet depletion reduced tumor growth by 50%. Staining of in vivo specimens revealed decreased tumor cell proliferation (p<0.001) and increased tumor and endothelial cell apoptosis (p<0.01). Platelet depletion also significantly decreased microvessel density and pericyte coverage (p<0.001). Platelet counts increase by 31-130% in mice with invasive ovarian cancer compared to controls (p<0.01) and strongly correlate with mean megakaryocyte counts in the spleen and bone marrow (r=0.95, p<0.05). Plasma levels of TPO, IL-6, and G-CSF were significantly increased in ovarian cancer patients with thrombocytosis. Plasma levels of the same cytokines were found to be significantly elevated in orthotopic mouse models of ovarian cancer, which consistently develop paraneoplastic thromocytosis. Silencing TPO, IL-6, and G-CSF significantly abrogated paraneoplastic thrombocytosis in vivo. This study provides new understanding of the clinical and biological significance of paraneoplastic thrombocytosis in ovarian cancer and uncovers key humoral factors driving this process. Blocking the development of paraneoplastic thrombocytosis and interfering with platelet-cancer cell interactions could represent novel therapeutic strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bronchial epithelial cells play a pivotal role in airway inflammation, but little is known about posttranscriptional regulation of mediator gene expression during the inflammatory response in these cells. Here, we show that activation of human bronchial epithelial BEAS-2B cells by proinflammatory cytokines interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-alpha) leads to an increase in the mRNA stability of the key chemokines monocyte chemotactic protein 1 and IL-8, an elevation of the global translation rate, an increase in the levels of several proteins critical for translation, and a reduction of microRNA-mediated translational repression. Moreover, using the BEAS-2B cell system and a mouse model, we found that RNA processing bodies (P bodies), cytoplasmic domains linked to storage and/or degradation of translationally silenced mRNAs, are significantly reduced in activated bronchial epithelial cells, suggesting a physiological role for P bodies in airway inflammation. Our study reveals an orchestrated change among posttranscriptional mechanisms, which help sustain high levels of inflammatory mediator production in bronchial epithelium during the pathogenesis of inflammatory airway diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patients with head and neck squamous cell carcinoma (HNSCC) demonstrate abnormal cell-mediated immunity which is most pronounced at the primary tumor site. Therefore, we tested whether this aberrant immunity could be due to tumor-derived cytokines. We investigated the presence of cytokine mRNA and protein in 8 HNSCC-derived cell lines; RT-PCR results indicated mRNA's for IL-1$\alpha$ and TGF-$\alpha$ (8/8), TGF-$\beta$ (7/8), IL-1$\beta$ (7/8), IL-4 and IL-6 (4/8). IL-2, IFN-$\gamma,$ and TNF-$\alpha$ mRNA was not detected. Supernatants from 6 of these cell lines were analyzed by ELISA and IL-1$\alpha,$ IL-1$\beta,$ and IL-6 were markedly increased compared to HPV-16 immortalized human oral keratinocytes. IL-1$\alpha$ was found in the highest concentration $>$IL-6 $>$ IL-1$\beta.$^ To approach the mechanisms of cytokine regulation, 4 cell lines were compared for HPV DNA presence, p53 status, and cytokine expression. An association between HPV DNA and cytokine expression was not found. However, cell lines secreting the most IL-6 had mutant p53 and/or HPV 16 E6/E7 expression. Further regulatory investigations revealed that exogenous IL-1$\alpha$ and/or IL-1$\beta$ minimally stimulated the proliferation of 2/3 cell lines, as well as strongly induced IL-6 production in 3/3; this effect was completely abrogated by IL-1Ra. IL-1Ra also inhibited the secretion of IL-1$\alpha$ and IL-1$\beta$ in 2/3 cell lines. These data suggest an IL-1 autocrine loop in certain HNSCC cell lines. Because IL-2 induces IL-1 and is used in therapy of HNSCC, the expression of IL-2 receptor was also investigated; IL-2 $\alpha$ and $\beta$ subunits were detected in 3/3 cell lines and $\gamma$ subunits was detected in one. Exogenous IL-2 inhibited the proliferation, but stimulated the secretion of IL-1$\alpha$ in 2/3, and IL-1$\beta$ and IL-6 in 1/3 cell lines.^ To determine if our cell line findings were applicable to patients, immunohistochemistry was performed on biopsies from 12 invasive tumors. Unexpectedly, universal intracellular production of IL-1$\alpha,$ IL-1$\beta,$ and IL-6 protein was detected. Therefore, the aberrant elaboration of biologically active IL-1 and IL-6 may contribute to altered immune status in HNSCC patients. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have recently reported that psychological stress is associated with a shift in the human type-1/type-2 cytokine balance toward a type-2 cytokine response. The mechanisms of these cytokine alterations are unknown, but likely involve glucocorticoid (GC) modulation of cytokine production. Therefore we sought to characterize the effects of GC on the in vitro human type-1/type-2 cytokine balance. We hypothesized that GC induce a type-2 cytokine shift through modulation of critical regulatory cytokines and alterations in the CD28/B7 costimulatory pathway. ^ We first sought to characterize the effect of the GC, dexamethasone (DEX), on type-1 (IFN-γ, IL-12) and type-2 (IL-4, IL-10) cytokine production by human peripheral blood mononuclear blood cells (pBMC) stimulated with a variety of T-lymphocyte and monocyte stimuli. DEX, at concentrations mimicking stress and supraphysiologic levels of cortisol, decreased IFN-γ and IL-12 production and increased IL-4 and IL-10 production, indicating a shift in the type-1/type-2 cytokine balance toward a type-2 response. Furthermore, both CD4+ and CD8+ T-lymphocytes were susceptible to the cytokine modulating effects of DEX. Furthermore, in the absence of the monocyte, the DEX-induced alterations in T-lymphocyte cytokine production were reduced, indicating that the interaction between the monocyte and T-lymphocyte plays a significant role. ^ We next determined the role of regulatory cytokines, known to modulate the type-1/type-2 cytokine balance, in the DEX-induced cytokine alterations. The addition of the recombinant IL-12p70 and IFN-γ, but not the neutralization of IL-4, IL-10 or IL-13 using monoclonal antibodies, attenuated the DEX-induced type-1/type-2 cytokine alterations. These data suggest that the DEX-induced cytokine alterations are mediated, at least in part, through the initial inhibition type-1 cytokines. Lastly, we investigated the role of the CD28/B7 costimulatory pathway in these cytokine alterations. DEX decreased the expression of CD80 and CD86 on THP-1 cells, a monocyte cell line, and the expression of CD28 and CTLA-4 on PHA-stimulated pBMC. The DEX-induced decrease in CD28 and CTLA-4 expression was attenuated by rhIL-12. Finally, CD28 activation attenuated the DEX-induced decrease in IFN-γ production, suggesting that modulation of the CD28/B7 costimulatory pathway may contribute to the DEX-induced type-1/type-2 cytokine alterations. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidence suggests that sex-based differences in immune function may predispose women to numerous hypersensitivity conditions such as Systemic lupus erythematosus (SLE), Hashimoto's thyroiditis and asthma. To date, the exact mechanisms of sexual dimorphism in immunity are not fully characterized but sex hormones such as 17-β estradiol (E2) and progesterone (PR) are believed to be involved. Since E2 and PR may modulate the production of critical regulatory cytokines, we sought to characterize their effects on the in vitro human type-1/type-2 cytokine balance. We hypothesized that E2 and/or PR vary cytokine production and influence costimulatory molecule expression and apoptosis. We first described the effect of E2 and/or PR on type-1 (IFN-γ and IL-12) and type-2 (IL-4 and IL-10) cytokine production by human peripheral blood mononuclear cells (PBMC) treated with various T-lymphocyte and monocyte stimuli. E2 and/or PR were each used at concentrations similar to those found at the maternal-fetal interface during pregnancy. At this dose, E2 increased IFN-γ and IL-12 production and PR decreased IFN-γ production and tended to increase IL-4 production. Furthermore, the combination of E2+PR decreased IL-12 production. This suggests that E2 shifts the type-1/type-2 cytokine balance towards a type-1 response and that PR and E2+PR shift the balance towards a type-2 response. Next, we used intracellular cytokine detection to demonstrate that E2 and/or PR are capable of altering cytokine production of CD3+ T-cells and the CD3+CD4+ and CD3+CD8+ subsets. In addition, we used the H9 T-lymphocyte cell line and the THP-1 monocyte cell line to show that E2 and/or PR can induce cytokine effects in both T-cells and monocytes independent of their interaction. Lastly, we determined the effect of E2 and/or PR on costimulatory molecule expression and apoptosis as potential mechanisms for the cytokine-induced alterations. E2 increased and PR decreased CD80 expression on THP-1 cells and PR and E2+PR decreased CD28 expression in PBMC and Jurkat cells. Furthermore, E2, PR and E2+PR increased Fas-mediated apoptosis in Jurkat cells and E2 increased FasL expression on THP-1 cells. Thus, E2 and/or PR may alter the cytokine balance by modulating the CD28/CD80 costimulatory pathway and apoptosis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis is the leading cause of death in the world due to a single infectious agent, making it critical to investigate all aspects of the immune response mounted against the causative agent, Mycobacterium tuberculosis , in order to better treat and prevent disease. Previous observations show a disparity in the ability to control mycobacterial growth between mouse strains sufficient in C5, such as C57BL/6 and B10.D2/nSnJ, and those naturally deficient in C5, such as A/J and B10.D2/nSnJ, with C5 deficient mice being more susceptible. It has been shown that during M. tuberculosis infection, C5 deficient macrophages have a defect in production of interleukin (IL)-12, a cytokine involved in the cyclical activation between infected macrophages and effector T cells. T cells stimulated by IL-12 produce interferon (IFN)-γ, the signature cytokine of T helper type 1 (Th1) cells. It is known that a cell-mediated Th1 response is crucial for control of M. tuberculosis in the lungs of humans and mice. This study demonstrates that murine T cells express detectable levels of CD88, a receptor for C5a (C5aR), following antigen presentation by macrophages infected with mycobacteria. T cells from C5 deficient mice infected with M. tuberculosis were found to secrete less IFN-γ and had a reduced Th1 phenotype associated with fewer cells expressing the transcription factor, T-box expressed in T cells (T-bet). The altered Th1 phenotype in M. tuberculosis infected C5 deficient mice coincided with a rise in IL-4 and IL-10 secretion from Th2 cells and inducible regulatory T cells, respectively. It was found that the ineffective T cell response to mycobacteria in C5 deficient mice was due indirectly to a lack of C5a via poor priming by infected macrophages and possibly by a direct interaction between T cells and C5a peptide. Therefore, these studies show a link between the cells of the innate and adaptive arms of the immune system, macrophages and T cells respectively, that was mediated by C5a using a mouse model of M. tuberculosis infection. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Allergic asthma is characterized by airflow obstruction, airway hyperresponsiveness (AHR) and chronic airway inflammation. We and others have reported that complement component C3 and the anaphylatoxin C3a receptor promote while C5 protects against the development of the biological and physiological hallmarks of allergic lung disease in mice. In this study, we assessed if the protective responses could be mediated by C5a, an activation-induced C5 cleavage product. Mice with ablation of the C5a receptor (C5aR) either by genetic deletion or by pharmacological blockade exhibited significantly exacerbated AHR compared to allergen-challenged wild-type (WT) mice. However, there were no significant differences in many of the other hallmarks of asthma such as airway infiltration by eosinophils or lymphocytes, pulmonary IL-4-producing cell numbers, goblet cell metaplasia, mucus secretion or total serum IgE levels. In contrast to elevated AHR, numbers of IL-5 and IL-13 producing pulmonary cells, and IL-5 and IL-13 protein levels, were significantly reduced in allergen-challenged C5aR-/- mice compared to allergen-challenged WT mice. Administration of a specific cysteinyl leukotriene receptor 1 (cysLT1R) antagonist before each allergen-challenge abolished AHR in C5aR-/- as well as in WT mice. Pretreatment with a C3aR antagonist dose-dependently reduced AHR in allergen-challenged WT and C5aR-/- mice. Additionally, allergen-induced upregulation of pulmonary C3aR expression was exaggerated in C5aR-/- mice compared to WT mice. In summary, deficiency or antagonism of C5aR in a mouse model of pulmonary allergy increased AHR, which was reversed or reduced by blockade of the cysLT1R and C3aR, respectively. In conclusion, this study suggests that C5a and C5aR mediate protection against AHR by suppressing cysLT and C3aR signaling pathways, which are known to promote AHR. This also supports important and opposing roles of complement components C3a/C3aR and C5a/C5aR in AHR. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmacytoid dendritic cells (pDCs) selectively express TLR7 which allows them to respond to RNA viruses and TLR9 which allows them to respond to DNA viruses and CpG oligonucleotides. Upon exposure to virus pDCs produce vast amounts of type I interferon (IFN) directly inhibiting viral replication and contributing to the activation of other immune cells. The ability of pDCs to promote B and T cell differentiation through type I IFN has been well documented although the role of additional factors including tumor necrosis factor (TNF) family members has not been thoroughly addressed. Here the expression of selected TNF family members in pDCs was examined and the role of TNF receptor-ligand interactions in the regulation of B and T lymphocyte growth and differentiation by pDCs was investigated. Upon stimulation with CpG-B, pDCs exhibit strong and stable expression of CD70, a TNF family ligand that binds to its receptor CD27 on memory B cells and promotes plasma cell differentiation and Ig secretion. Using an in vitro pDC/B cell co-culture system, it was determined that CpG-B-stimulated pDCs induce the proliferation of CD40L-activated human peripheral B cells and Ig secretion. This occurs independently of IFN and residual CpG, and requires physical contact between pDCs and B cells. CpG-stimulated pDCs induce the proliferation of both naive and memory B cells although Ig secretion is restricted to the memory subset. Blocking the interaction of CD70 with CD27 using an antagonist anti-CD70 antibody reduces the induction of B cell proliferation and IgG secretion by CpG-B-stimulated pDCs. Published studies have also indicated an important role for CD70 in promoting the expansion of CD4+ and CD8+ T cells and the development of effector function. CpG-B-stimulated pDCs induce naïve CD4+ T cell proliferation and production of multiple cytokines including IFN-γ, TNF-α, IL-10, IL-4, IL-5 and IL-13. Blocking the function of CD70 with an antagonist anti-CD70 antibody significantly reduced the induction of naïve CD4+ T cell proliferation by CpG-B-stimulated pDCs and the production of IL-4 and IL-13. Collectively these data indicate an important role for CD70 in the regulation of B and T lymphocyte growth and differentiation by pDCs. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Allergen-induced asthma is the leading form of asthma and a chronic condition worldwide. Common allergens are known to contribute to the pathogenesis of this disease. Murine models of allergic asthma have mostly used an intraperitoneal route of sensitization (not airway) to study this disease. Allergic asthma pathophysiology involves the activation of TH2-specific cells, which triggers production of IgE antibodies, the up-regulation of TH2-specific cytokines (i.e. IL-4, IL-5, IL-9 and IL-13), increased airway eosinophilia, and mucin hypersecretion. Although there are several therapeutics currently treating asthmatic patients, some of these treatments can result in drug tolerance and may be linked to increased mortality. CpG oligodeoxynucleotides (ODNs) is a synthetic ligand that targets Toll-like Receptor (TLR) 9. It has been evaluated as a therapeutic agent for the treatment of cancer, infectious diseases, and for treating allergy and asthma. PUL-042 is also a synthetic TLR ligand and is composed of two agonists against TLR2/6 heterodimer and TLR9. Previous studies have evaluated PUL-042 for its ability to confer resistance against bacterial and viral lung infection. These findings, combined with studies performed using CpG ODNs, led to speculation that PUL-042 dampens the immune response in allergen-induced asthma. My thesis research investigated airway route sensitization and airway delivery of PUL-042 to evaluate its effects in reducing an allergen-induced asthma phenotype in a murine model. The results of this study contribute to the foundation for future investigations to evaluate the efficacy of PUL-042 as a novel therapy in allergic-asthma disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Potent vaccine formulations ideally include adjuvants to activate innate immune responses and enhance antigen-specific adaptive immunity. The synthetic glycolipid alpha-Galactosylceramide (α-GalCer) effectively activates the innate immune mediating NKT cells to produce cytokines and activate downstream immune cells, resulting in development of humoral and cell mediated immune responses to co-administered antigens. While a single intravenous immunization of α-GalCer strongly activates NKT cells, multiple doses by this route are well documented to induce anergy in NKT cells. Anergy is defined as the deficiency in NKT proliferation and cytokine production, including IL-4 and IFNγ. However, our studies have shown that two doses of α-GalCer administered intranasally by the intranasal route leads to reactivation of NKT cells and improved adaptive immune responses after each subsequent dose. I therefore investigated the role of multiple routes of immunization in activation of NKT cells, i.e. anergy versus repeated activation. Specifically, I hypothesized that the differential capacity of NKT cells to produce IFNγ, as a result of route of immunization with α-GalCer, influences the induction of adaptive immune responses to co-administered antigen. Our experimental design utilizes the observation that intranasal immunization primarily induces immune responses in the lungs while intravenous immunization induces responses in the liver. Using intracellular cytokine staining for IFNγ production and Elispot analyses for determining NKT and T cell activation, respectively, it was determined that administering two consecutive intravenous doses resulted in anergy to NKT cells (no IFNγ production) in the liver and lack of adaptive immunity while second immunization by the intranasal route overcame anergy in the lung. The outcome in the other tissues analyzed was mixed and could be the result of tissue microenvironment among others possible reasons. When intranasal dosing preceded systemic, NKT cells were reactivated to produce IFNγ and induced positive adaptive immune responses in the responding lung tissue. These results indicate that the mechanism by which mucosal and systemic immunization routes activate NKT cells may differ in that there is a differential tissue-specific effect induced by each route. Future studies are necessary to determine the reason for these tissue-specific effects and how they relate to NKT cell activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skin cancer is the most prevalent form of neoplasia, with over one million newcases diagnosed this year. UV radiation is a ubiquitous environmental agent that induces skin cancer. In addition to its carcinogenic effect, UV radiation also suppresses cell-mediated immune responses. This immune suppression is not only observed at the site of irradiation, but UV radiation also induces systemic immune suppression. Since UV radiation has a limited ability to penetrate the skin, the question of the mechanism of this systemic immune suppression arises. A number of studies have suggested that UV radiation induce systemic effects through the production of immunoregulatory cytokines, such as IL-4 and IL-10. These cytokines affect the immune response by altering systemic antigen presentation, specifically by suppressing the activation of Th1 cells while allowing the activation of Th2 cells. Because IL-12 is an important regulator of Th1 cell activation, we tested the hypothesis that administration of IL-12 could overcome UV-induced immune suppression. ^ The studies presented here are divided into dime specific aims. In the first specific aim, the ability of IL-12 to overcome UV-induced immune suppression was examined. IL-12 could overcome UV-induced immune suppression as well as prevent the generation of and neutralize the activity of preformed suppressor cells induced by UV radiation. In the second specific aim, the mechanism by which IL-12 overcomes UV-induced immune suppression was examined. IL-12 overcame UV-induced immune suppression by blocking the production of immunoregulatory cytokines such as IL-4, IL-10 and TNF-α. In the third specific aim, the effect of UV radiation on antigen presentation was investigated. UV radiation was found to decrease the production of biologically active IL-12. In addition, UV also increased the production of IL-12p40 homodimer, an antagonist of IL-12p70 heterodimer. This result suggests that IL-12 may have a dual role in the immune suppression induced by, UV radiation. On one hand the biologically active IL-12p70 heterodimer blocks UV-induced immune suppression. In contrast, IL-12p40 homodimer may mediate the suppressive effect of UV radiation. This paradox indicates that IL-12 may have a greater regulatory role in the immune response than was previously suspected. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

T cell activation and expansion is essential for immune response against foreign antigens. However, uncontrolled T cell activity can be manifested as a number of lymphoid derived diseases such as autoimmunity, graft versus host disease, and lymphoma. The purpose of this research was to test the central hypothesis that the Jak3/Stat5 pathway is critical for T cell function. To accomplish this objective, two novel Jak3 inhibitors, AG490 and PNU156804, were identified and their effects characterized on Jak3/Stat5 activation and T cell growth. Inhibition of Jak3 selectively disrupted primary human T lymphocyte growth in response to Interleukin-2 (IL-2), as well as other γ c cytokine family members including IL-4, IL-7, IL-9, and IL-15. Inhibition of Jak3 ablated IL-2 induced Stat5 but not TNF-α mediated NF-κβ DNA binding. Loss of Jak3 activity did not affect T cell receptor mediated signals including activation of p56Lck and Zap70, or IL-2 receptor a chain expression. To examine the effects of Jak3/Stat5 inhibition within a mature immune system, we employed a rat heart allograft model of Lewis (RT1 1) to ACI (RT1a). Heart allograft survival was significantly prolonged following Jak3/Stat5 inhibition when rats were treated with AG490 (20mg/kg) or PNU156804 (80mg/kg) compared to non-treated control animals. This effect was synergistically potentiated when Jak3 inhibitors were used in combination with a signal 1/2 disrupter, cyclosporine, but only additively potentiated with another signal 3 inhibitor, rapamycin. This suggested that sequential inhibition of T cell function is more effective. To specifically address the role of Stat5 in maintaining T cell activity, novel Stat5 antisense oligonucleotides were synthesized and characterized in vitro. Primary human T cells and T-cell tumor lines treated with Stat5 antisense oligonucleotide (7.5 μM) rapidly underwent apoptosis, while no changes in cell cycle were observed as measured by FACS analysis utilizing Annexin-V-Fluorescein and Propidium iodide staining. Evidence is provided to suggest that caspase 8 and 9 pathways mediate this event. Thus, Stat5 may act rather as a negative regulator of apoptotic signals and not as a positive regulator of cell cycle as previously proposed. We conclude that the Jak3/Stat5 pathway is critical for γc cytokine mediated gene expression necessary for T cell expansion and normal immune function and represents an therapeutically relevant effector pathway to combat T cell derived disease. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultraviolet radiation plays a critical role in the induction of non-melanoma skin cancer. UV radiation is also immune suppressive. Moreover, UV-induced systemic immune suppression is a major risk factor for skin cancer induction. Previous work had shown that UV exposure in vivo activates a cytokine cascade involving PGE2, IL-4, and IL-10 that induces immune suppression. However, the earliest molecular events that occur immediately after UV-exposure, especially those upstream of PGE2, were not well defined. To determine the initial events and mediators that lead to immune suppression after a pathological dose of UV, mouse keratinocytes were analyzed after sunlamp irradiation. It is known that UV-irradiated keratinocytes secrete the phospholipid mediator of inflammation, platelet-activating factor (PAF). Since PAF stimulates the production of immunomodulatory compounds, including PGE2, the hypothesis that UV-induced PAF activates cytokine production and initiates UV-induced immune suppression was tested. Both UV and PAF activated the transcription of cyclooxygenase (COX)-2 and IL-10 reporter gene constructs. A PAF receptor antagonist blocked UV-induced IL, 10 and COX-2 transcription. PAF mimicked the effects of UV in vivo and suppressed delayed-type hypersensitivity (DTH), and immune suppression was blocked when UV-irradiated mice were injected with a PAF receptor antagonist. This work shows that UV generates PAF-like oxidized lipids, that signal through the PAF receptor, activate cytokine transcription, and induce systemic immune suppression. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vitamin C (ascorbic acid--AA) can have a substantial impact on human health by reducing the incidence and/or severity of coryza. Studies also suggest it has immunomodulatory functions in humans. Immune function is controlled by cytokines, such as type-1 cytokines (IFNγ) that promote antiviral immunity and type-2 cytokines (IL-4, IL-10) that promote humoral immunity. Knowing the mechanisms responsible for both antiviral immunity and type-1/type-2 cytokine balance, we sought to identify AA-induced alterations of human peripheral blood mononuclear cells (PBMC) in vivo and in vitro . We hypothesized that AA modulates the immune system, altering both number and function of PBMC. We first described the effect of 14 days of oral (1 gram) AA in healthy subjects. AA increased circulating natural killer (NK) cells, CD25+ and HLA-DR+ T cells, and PMA/ionomycin-stimulated intracellular IFNγ. We subsequently developed models for in vitro use. We determined that AA was toxic in vitro to T cells when used at doses found intracellularly but doses found in plasma from individuals taking 1gm/day AA were nontoxic. The model that most fully reproduced our in vivo intracellular cytokine findings used dehydroascorbic acid and buffers to deliver AA intracellularly. This model generated the largest increase in IFNγ at physiologic plasma concentrations. Previous studies demonstrate that chronic psychological stress is associated with a type-2 cytokine response. We hypothesized that vitamin C could prevent the type-2 cytokine shift associated with stress. In a study of medical students taking 1 g AA or placebo, a significant increase in IFNγ was seen intracellularly in CD4+ and CD8+ cells and in tetanus-stimulated cultures in the AA group only. We also observed increases in IFNγ/IL-4 and IFNγ/IL-10 ratios with AA supplementation, indicating a type-1 shift. Furthermore, we noted increased numbers of NK cells and activated T cells in the peripheral blood in the AA treated group only. Lastly, we investigated the role of the CD40L/CD40 and CD28/B7 costimulatory pathway in these cytokine alterations. AA did not have any effect on either pathway studied. Thus costimulatory pathways are not contributing to AA induced modulation of the type-1/type-2 immune balance. ^