18 resultados para Glioblastoma -- genetics

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTRIBUTION OF ECTODOMAIN MUTATIONS IN EPIDERMAL GROWTH FACTOR RECEPTOR TO SIGNALING IN GLIOBLASTOMA MULTIFORME Publication No._________ Marta Rojas, M.S. Supervisory Professor: Oliver Bögler, Ph.D. The Cancer Genome Atlas (TCGA) has conducted a comprehensive analysis of a large tumor cohort and has cataloged genetic alterations involving primary sequence variations and copy number aberrations of genes involved in key signaling pathways in glioblastoma (GBM). This dataset revealed missense ectodomain point mutations in epidermal growth factor receptor (EGFR), but the biological and clinical significance of these mutations is not well defined in the context of gliomas. In our study, we focused on understanding and defining the molecular mechanisms underlying the functions of EGFR ectodomain mutants. Using proteomic approaches to broadly analyze cell signaling, including antibody array and mass spectrometry-based methods, we found a differential spectrum of tyrosine phosphorylation across the EGFR ectodomain mutations that enabled us to stratify them into three main groups that correlate with either wild type EGFR (EGFR) or the long-studied mutant, EGFRvIII. Interestingly, one mutant shared characteristics of both groups suggesting a continuum of behaviors along which different mutants fall. Surprisingly, no substantial differences were seen in activation of classical downstream signaling pathways such as Akt and S6 pathways between these classes of mutants. Importantly, we demonstrated that ectodomain mutations lead to differential tumor growth capabilities in both in vitro (anchorage independent colony formation) and in vivo conditions (xenografts). Our data from the biological characterization allowed us to categorize the mutants into three main groups: the first group typified by EGFRvIII are mutations with a more aggressive phenotype including R108K and A289T; a second group characterized by a less aggressive phenotype exemplified by EGFR and the T263P mutation; and a third group which shared characteristics from both groups and is exemplified by the mutation A289D. In addition, we treated cells overexpressing the mutants with various agents employed in the clinic including temozolomide, cisplatin and tarceva. We found that cells overexpressing the mutants in general displayed resistance to the treatments. Our findings yield insights that help with the molecular characterization of these mutants. In addition, our results from the drug studies might be valuable in explaining differential responses to specific treatments in GBM patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular and cytogenetic analyses of human glioblastomas have revealed frequent genetic alterations, including major deletions in chromosomes 9, 10, and 17, suggesting the presence of glioma-associated tumor suppressor genes on these chromosomes. To examine this hypothesis, copies of chromosomes 2, 4, and 10 derived from a human fibroblast cell line were independently introduced into a human glioma cell line, U251, by microcell-mediated chromosomal transfer. Successful transfer of chromosomes in each case was confirmed by resistance to the drug G418, indicating the presence of the neomycin-resistance gene previously integrated into each transferred chromosome. The presence of novel chromosomes and or chromosomal fragments was also demonstrated by molecular and karyotypic analyses. The hybrid clones containing either a novel chromosome 4 or chromosome 10 displayed suppression of the tumorigenic phenotype in vivo and suppression of the transformed phenotype in vitro, while cells containing a transferred chromosome 2 failed to alter their tumorigenic phenotype. The hybrid cells containing chromosome 4 or 10 exhibited a significant decrease in their saturation density, altered cellular morphology at high cell density, but only a slight decrease in their exponential growth rate. A dramatic decrease was observed in growth of cells with chromosome 4 or 10 in soft agarose, with the number and size of the colonies being greatly reduced, compared to the parental or chromosome 2 containing cells. The introduction of chromosome 4 or 10 also completely suppressed tumor formation in nude mice. These studies indicate that chromosome 10, as hypothesized, and chromosome 4, a novel finding for gliomas, harbor tumor suppressor loci that may be directly involved in the initiation or progression of normal glial precursors to human glioblastoma multiforme. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. The current theory is that these tumors are caused by self-renewing glioblastoma-derived stem cells (GSCs). At the current time, the mechanisms that regulate self-renewal and other oncogenic properties of GSCs remain unknown. Recently, we found transcriptional repressor REST maintains self-renewal in neural stem cells (NSCs) and in GSCs. REST also regulates other oncogenic properties, such as apoptosis, invasion and proliferation. However, the mechanisms by which REST regulates these oncogenic properties are unknown. In an attempt to determine these mechanisms, we performed loss and gain-of-function experiments and genome-wide mRNA expression analysis in GSCs, and we were able to identify REST-regulated genes in GSCs. This was accomplished, after screening concordantly regulated genes in NSCs and GSCs, utilizing two RE1 databases, and setting two-fold expression as filters on the resulting genes. These results received further validation by qRT-PCR. Ingenuity Pathway Analysis (IPA) analysis further revealed the top REST target genes in GSCs were downstream targets of REST and/or involved in other cancers in other cell lines. IPA also revealed that many of the differentially-regulated genes identified in this study are involved in oncogenic properties seen in GBM, and which we believe are related to REST expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Native peoples of the New World, including Amerindians and admixed Latin Americans such as Mexican-Americans, are highly susceptible to diseases of the gallbladder. These include cholesterol cholelithiasis (gallstones) and its complications, as well as cancer of the gallbladder. Although there is clearly some necessary dietary or other environmental risk factor involved, the pattern of disease prevalence is geographically associated with the distribution of genes of aboriginal Amerindian origin, and levels of risk generally correspond to the degree of Amerindian admixture. This pattern differs from that generally associated with Westernization, which suggests a gene-environment interaction, and that within an admixed population there is a subset whose risk is underestimated when admixture is ignored. The risk that an individual of a susceptible New World genotype will undergo a cholecystectomy by age 85 can approach 40% in Mexican-American females, and their risk of gallbladder cancer can reach several percent. These are heretofore unrecognized levels of risk, especially of the latter, because previous studies have not accounted for admixture or for the loss of at-risk individuals due to cholecystectomy. A genetic susceptibility may, thus, be as "carcinogenic" in New World peoples as any known major environmental exposure; yet, while the risk has a genetic basis, its expression as gallbladder cancer is so delayed as to lead only very rarely to multiply-affected families. Estimates in this paper are derived in part from two studies of Mexican-Americans in Starr County and Laredo, Texas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the hepatocyte growth factor receptor (c-Met) and its ligand, the hepatocyte growth factor (HGF), and a constitutively active mutant of the epidermal growth factor receptor (∆EGFR/EGFRvIII), occur frequently in glioblastoma. c-Met is activated in a ligand-dependent manner by HGF or in a ligand-independent manner by ∆EGFR. Dysregulated c-Met signaling contributes to the aggressive phenotype of glioblastoma, yet the mechanisms underlying the production of HGF in glioblastoma are poorly understood. We found a positive correlation between HGF and c-Met expression in glioblastoma, suggesting that they are coregulated. This is supported by the finding that in a c-Met/HGF axis-dependent glioblastoma cell line, shRNA-mediated silencing of c-Met, or treatment with the c-Met inhibitor SU11274, attenuated HGF expression. Biologically, c-Met knockdown decreased anchorage-independent colony formation and the tumorigenicity of intracranial xenografts. Building on prior findings that ∆EGFR enhanced c-Met activation, we found that ∆EGFR also led to increased HGF expression, which was reversed upon ∆EGFR inhibition with AG1478. ∆EGFR required c-Met to maintain elevated HGF expression, colony formation of glioblastoma cells, and the tumorigenicity of orthotopic xenografts. An unbiased mass spectrometry-based approach identified phosphotyrosine-related signaling changes that occurred with c-Met knockdown in a glioblastoma cell line expressing ΔEGFR and in parental cells. Notably, phosphorylation of STAT3, a master regulator of the mesenchymal GBM subtype and a known target of ∆EGFR, also decreased when c-Met was silenced in these cells, suggesting that the signals from these receptors converge on STAT3. Using a STAT3 inhibitor, WP1193, we showed that STAT3 inhibition decreased HGF mRNA expression in ΔEGFR-expressing glioblastoma cells. Consistent with these findings, constitutively active STAT3 partially restored HGF expression and anchorage-independent growth of c-Met knockdown glioblastoma cells that overexpressed ΔEGFR. We found that higher levels of HGF and c-Met expression associated with the mesenchymal GBM subtype. Taken together, these results suggest that the activity of c-Met regulates the expression of HGF in glioblastoma cells, that ∆EGFR feeds positively into this autocrine loop, that signaling of the two receptors together modulate HGF expression via STAT3, and that the HGF/c-Met axis may therefore be a good additional target for therapy of mesenchymal GBM tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable number of tandem repeats (VNTR) are genetic loci at which short sequence motifs are found repeated different numbers of times among chromosomes. To explore the potential utility of VNTR loci in evolutionary studies, I have conducted a series of studies to address the following questions: (1) What are the population genetic properties of these loci? (2) What are the mutational mechanisms of repeat number change at these loci? (3) Can DNA profiles be used to measure the relatedness between a pair of individuals? (4) Can DNA fingerprint be used to measure the relatedness between populations in evolutionary studies? (5) Can microsatellite and short tandem repeat (STR) loci which mutate stepwisely be used in evolutionary analyses?^ A large number of VNTR loci typed in many populations were studied by means of statistical methods developed recently. The results of this work indicate that there is no significant departure from Hardy-Weinberg expectation (HWE) at VNTR loci in most of the human populations examined, and the departure from HWE in some VNTR loci are not solely caused by the presence of population sub-structure.^ A statistical procedure is developed to investigate the mutational mechanisms of VNTR loci by studying the allele frequency distributions of these loci. Comparisons of frequency distribution data on several hundreds VNTR loci with the predictions of two mutation models demonstrated that there are differences among VNTR loci grouped by repeat unit sizes.^ By extending the ITO method, I derived the distribution of the number of shared bands between individuals with any kinship relationship. A maximum likelihood estimation procedure is proposed to estimate the relatedness between individuals from the observed number of shared bands between them.^ It was believed that classical measures of genetic distance are not applicable to analysis of DNA fingerprints which reveal many minisatellite loci simultaneously in the genome, because the information regarding underlying alleles and loci is not available. I proposed a new measure of genetic distance based on band sharing between individuals that is applicable to DNA fingerprint data.^ To address the concern that microsatellite and STR loci may not be useful for evolutionary studies because of the convergent nature of their mutation mechanisms, by a theoretical study as well as by computer simulation, I conclude that the possible bias caused by the convergent mutations can be corrected, and a novel measure of genetic distance that makes the correction is suggested. In summary, I conclude that hypervariable VNTR loci are useful in evolutionary studies of closely related populations or species, especially in the study of human evolution and the history of geographic dispersal of Homo sapiens. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of chromosome 10 represents the most common cytogenetic abnormality in high grade gliomas (glioblastoma multiforme). To identify genes involved in the malignant progression of human gliomas, a subtractive hybridization was performed between a tumorigenic glioblastoma cell line (LG11) and a nontumorgenic hybrid cell (LG11.3) containing an introduced chromosome 10. LG11 mRNA was subtracted from LG11.3 cDNA to produce cDNA probes enriched for sequences whose expression differs quantitatively from the parental tumorigenic cells. Both known and novel sequences were identified as a result of the subtraction. Northern blot analysis was then used to confirm differential expression of several subtracted clones. One novel clone, clone 17, identified a 2.6 kb message that showed a consistent two to four fold increase in expression in the LG11.3 nontumorigenic cells. Clone 17 (340 bp) was used successfully to screen for a near full-length version, RIG (regulated in glioma), which was 2,569 bp in size. The RIG cDNA sequence showed homology to clone 17 and to an anonymous EST (IB666), but to no previously identified genes. This screening effort also identified several independent clones representing novel sequences, most of which failed to show increased expression in the nontumorigenic GBM cells. Tissue distribution studies of RIG indicated highest levels of expression in human brain with appreciably lower levels in heart and lung. In vitro transcription and translation experiments demonstrated the ability of RIG to direct the synthesis of a 13 kD protein product. However, open reading frame analysis revealed no identify with previously described motifs or any known proteins. Using a combination of somatic cell hybrid panels and in situ hybridization, the RIG gene was mapped to chromosome 11p14-11p15. Further study of RIG and related gene products may provide insight into the negative regulation of glial oncogenesis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PAX6, a member of the paired-type homeobox gene family, is expressed in a partially and temporally restricted pattern in the developing central nervous system, and its mutation is responsible for human aniridia (AN) and mouse small eye (Sey). The objective of this study was to characterize the PAX6 gene regulation at the transcriptional level, and thereby gain a better understanding of the molecular basis of the dynamic expression pattern and the diversified function of the human PAX6 gene.^ Initially, we examined the transcriptional regulation of the PAX6 gene by transient transfection assays and identified multiple cis-regulatory elements that function differently in different cell lines. The transcriptional initiation site was identified by RNase protection and primer extension assays. Examination of the genomic DNA sequence indicated that the PAX6 promoter has a TATA like-box (ATATTTT) at $-$26 bp, and two CCAAT-boxes are located at positions $-$70 and $-$100 bp. A 38 bp ply (CA) sequence was located 992 bp upstream from the initiation site. Transient transfection assays in glioblastoma cells and leukemia cells indicate that a 92 bp region was required for basal level PAX6 promoter activity. Gel retardation assays showed that this 92 bp sequence can form four DNA-protein complexes which can be specifically competed by a 31-mer oligonucleotide containing a PAX6 TATA-like sequence or an adenovirus TATA box. The activation of the promoter is positively correlated with the expression of PAX6 transcripts in cells tested.^ Based on the results obtained from the in vitro transfection assays, we did further dissection assay and functional analysis in both cell-culture and transgenic mice. We found that a 5 kb upstream promoter sequence is required for the tissue specific expression in the forebrain region which is consistent with that of the endogenous PAX6 gene. A 267 bp cell-type specific repressor located within the 5 kb fragment was identified and shown to direct forebrain specific expression. The cell-type specific repressor element has been narrowed to a 30 bp region which contains a consensus E-box by in vitro transfection assays. The third regulatory element identified was contained in a 162 bp sequence (+167 to +328) which functions as a midbrain repressor, and it appeared to be required for establishing the normal expression pattern of the PAX6 gene. Finally, a highly conserved 216 bp sequence identified in intron 4 exhibited as a spinal cord specific enhancer. And this 216 bp cis-regulatory element can be used as a marker to trace the differentiation and migration of progenitor cells in the developing spinal cord. These studies show that the concerted action of multiple cis-acting regulatory elements located upstream and downstream of the transcription initiation site determines the tissue specific expression of PAX6 gene. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic etiology of stroke likely reflects the influence of multiple loci with small effects, each modulating different pathophysiological processes. This research project utilized three analytical strategies to address the paucity of information related to the identification and characterization of genetic variation associated with stroke in the general population. ^ First, the general contribution of familial factors to stroke susceptibility was evaluated in a population-based sample of unrelated individuals. Increased risk of subclinical cerebral infarction was observed among individuals with a positive parental history of stroke. This association did not appear to be mediated by established stroke risk factors, specifically blood pressure levels or hypertension status. ^ The need to identify specific gene variation associated with stroke in the general population was addressed by evaluating seven candidate gene polymorphisms in a population-based sample of unrelated individuals. Three polymorphisms were significantly associated with increased subclinical cerebral infarction or incident clinical ischemic stroke risk. These relationships include the G-protein β3 subunit 825C/T polymorphism and clinical stroke in Whites, the lipoprotein lipase S/X447 polymorphism and subclinical and clinical stroke in men, and the angiotensin I-converting enzyme Ins/Del polymorphism and subclinical stroke in White men. These associations did not appear to be obfuscated by the stroke risk factors adjusted for in the analysis models specifically blood pressure levels or anti-hypertensive medication use. ^ The final research strategy considered, on a genome-wide scale, the idea that genetic variation may contribute to the occurrence of hypertension or stroke through a common etiologic pathway. Genomic regions were identified for which significant evidence of heterogeneity was observed among hypertensive sibpairs stratified by family history of stroke information. Regions identified on chromosome 15 in African Americans, and chromosome 13 in Whites and African Americans, suggest the presence of genes influencing hypertension and stroke susceptibility. ^ Insight into the role of genetics in stroke is useful for the potential early identification of individuals at increased risk for stroke and improved understanding of the etiology of the disease. The ultimate goal of these endeavors is to guide the development of therapeutic intervention and informed prevention to provide a lasting and positive impact on public health. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dramatic poor survival of patients diagnosed with glioblastoma multiforme (GBM) is a reflection of the struggles that accompany traditional treatments. Thus, the development of molecular-based targeted therapies represents new windows for intervention. In this study, we hypothesized that we could select peptide-ligands that selectively target GBM based on the idea that the glioma microenvironment may induce or modify the expression of cell surface receptors that could be accessed by circulating peptides. To select the peptides we employed two distinct in vivo screenings. First, a random phage-displayed peptide library was injected into mice bearing intracranial tumors. Phage that bound to tumor were recovered and sequenced. We found that the tumor-derived phage CLSYKGRC, CNKVSTKC and CQSSREKC were recovered with the highest frequencies and used for subsequent targeting experiments. Second, the phage peptide library was injected into mice without tumors and phage were recovered from brain and sequenced. A phage-displayed peptide (CRTIGPSVC) with homology to transferrin (Tf) was selected and injected into brain tumor-bearing mice. Results showed that after 6 hours of circulation, the CLSYKGRC, CNKVSTKC and CQSSREKC-phage selectively targeted GBM vasculature. In contrast, Tf-like phage accumulated outside the tumor blood vessels in the cytoplasm of cells located within GBM, suggesting it was internalized in vivo. However, after short periods of circulation this phage was restricted to the tumor vasculature. Importantly, none of the selected phage targeted normal brain cells in animals bearing intracranial tumors. An affinity column coupled to the CNKVSTKC zpeptide was used to identify receptors from GBM. Using mass-spectrometry Vimentin, a marker of glial malignancy, was identified as a potential receptor. Other studies showed that the Tf-like phage bound selectively to Apo-Tf (iron free), with no binding to Holo-Tf (iron loaded) or to Tf receptor (TfR). However, the binding of Tf-like phage to glioma cells that express TfR increased in the presence of Apo-Tf. Thus, the Tf-like phage could indirectly target TfR using the endogenous Tf pathway. We propose that the novel peptides identified in this study could be conjugated to therapeutic or imaging agents for use GBM. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma, also known as glioblastoma multiform or GBM, is the most common and most malignant primary brain tumor. The clinical history of patients with glioblastoma is short, usually less than 3 months in more than 50% of cases after diagnosis. Currently, the methods of glioblastoma treatment are chemotherapy, radiotherapy and surgery. Even with the more effective treatment options, patients with glioblastoma most likely have a median survival time of 10 to 12 months. It is necessary to seek other treatment methods, including gene-targeted treatment. The success of gene-targeted treatment depends critically on the knowledge of genes that may be the cause of, or contribute to disease. To establish a correlate between glioblastoma survival timeline and micro RNA expression alteration, a study of 91 glioblastoma patients was conducted at the University of Texas M. D. Anderson Cancer Center. These 91 glioblastoma patients were newly diagnosed from 2002 to 2007. Statistical analysis was conducted to test the association of miRNA expression alteration between long-term survival and short-term survival glioblastoma. The completion of this proposed study will provide a better understanding of the regulatory role of miRNA in glioblastoma progression.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with poor prognosis due in part to drug resistance and high incidence of tumor recurrence. The drug resistant and cancer recurrence phenotype may be ascribed to the presence of glioblastoma stem cells (GSCs), which seem to reside in special stem-cell niches in vivo and require special culture conditions including certain growth factors and serum-free medium to maintain their stemness in vitro. Exposure of GSCs to fetal bovine serum (FBS) can cause their differentiation, the underlying mechanism of which remains unknown. Reactive oxygen species (ROS) play an important role in normal stem cell differentiation, but their role in affecting cancer stem cell fate remains unclear. Whether the metabolic characteristics of GSCs are different from other glioblastoma cells and can be targeted are also unknown. In this study, we used several stem-like glioblastoma cell lines derived from clinical tissues by typical neurosphere culture system or orthotopic xenografts, and showed that addition of fetal bovine serum to the medium induced an increase of ROS, leading to aberrant differentiation and decreases of stem cell markers such as CD133. We found that exposure of GSCs to serum induced their differentiation through activation of mitochondrial respiration, leading to an increase in superoxide (O2-) generation and a profound ROS stress response manifested by upregulation of oxidative stress response pathway. This increase in mitochondrial ROS led to a down-regulation of molecules including SOX2, and Olig2, and Notch1 that are important for stem cell function and an upregulation of mitochondrial superoxide dismutase SOD2 that converts O2- to H2O2. Neutralization of ROS by antioxidant N-acetyl-cysteine in the serum-treated GSCs suppressed the increase of superoxide and partially rescued the expression of SOX2, Olig2, and Notch1, and prevented the serum-induced differentiation phenotype. Additionally, GSCs showed high dependence on glycolysis for energy production. The combination of a glycolytic inhibitor 3-BrOP and a chemotherapeutic agent BCNU depleted cellular ATP and inhibited the repair of BCNU-induced DNA damage, achieving strikingly synergistic killing effects in drug resistant GSCs. This study uncovers the metabolic properties of glioblastoma stem cells and suggests that mitochondrial function and cellular redox status may profoundly affect the fates of glioblastoma stem cells via a ROS-mediated mechanism, and that the active glycolytic metabolism in cancer stem cells may provide a biochemical basis for developing novel therapeutic strategies to effectively eliminate GSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an interface between the circulatory and central nervous systems, the neurovascular unit is vital to the development and survival of tumors. The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are major impediments to surgical resection and targeted therapies. Adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we have utilized human GBM cell lines, primary patient samples, and pre-clinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin associates with Rho GDP Dissociation Inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin-RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, suppresses activation of Rho proteins to promote GBM cell invasiveness. Hence, targeting the αvβ8 integrin-RhoGDI1 signaling axis may be an effective strategy for blocking GBM cell invasion.