30 resultados para Gene-Environment Interaction

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite current enthusiasm for investigation of gene-gene interactions and gene-environment interactions, the essential issue of how to define and detect gene-environment interactions remains unresolved. In this report, we define gene-environment interactions as a stochastic dependence in the context of the effects of the genetic and environmental risk factors on the cause of phenotypic variation among individuals. We use mutual information that is widely used in communication and complex system analysis to measure gene-environment interactions. We investigate how gene-environment interactions generate the large difference in the information measure of gene-environment interactions between the general population and a diseased population, which motives us to develop mutual information-based statistics for testing gene-environment interactions. We validated the null distribution and calculated the type 1 error rates for the mutual information-based statistics to test gene-environment interactions using extensive simulation studies. We found that the new test statistics were more powerful than the traditional logistic regression under several disease models. Finally, in order to further evaluate the performance of our new method, we applied the mutual information-based statistics to three real examples. Our results showed that P-values for the mutual information-based statistics were much smaller than that obtained by other approaches including logistic regression models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triglyceride levels are a component of plasma lipids that are thought to be an important risk factor for coronary heart disease and are influenced by genetic and environmental factors, such as single nucleotide polymorphisms (SNPs), alcohol intake, and smoking. This study used longitudinal data from the Bogalusa Heart Study, a biracial community-based survey of cardiovascular disease risk factors. A sample of 1191 individuals, 4 to 38 years of age, was measured multiple times from 1973 to 2000. The study sample consisted of 730 white and 461 African American participants. Individual growth models were developed in order to assess gene-environment interactions affecting plasma triglycerides over time. After testing for inclusion of significant covariates and interactions, final models, each accounting for the effects of a different SNP, were assessed for fit and normality. After adjustment for all other covariates and interactions, LIPC -514C/T was found to interact with age3, age2, and age and a non-significant interaction of CETP -971G/A genotype with smoking status was found (p = 0.0812). Ever-smokers had higher triglyceride levels than never smokers, but persons heterozygous at this locus, about half of both races, had higher triglyceride levels after smoking cessation compared to current smokers. Since tobacco products increase free fatty acids circulating in the bloodstream, smoking cessation programs have the potential to ultimately reduce triglyceride levels for many persons. However, due to the effect of smoking cessation on the triglyceride levels of CETP -971G/A heterozygotes, the need for smoking prevention programs is also demonstrated. Both smoking cessation and prevention programs would have a great public health impact on minimizing triglyceride levels and ultimately reducing heart disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have led to the hypothesis that major risk factors for developing diseases such as hypertension, cardiovascular disease and adult-onset diabetes are established during development. This developmental programming hypothesis proposes that exposure to an adverse stimulus or insult at critical, sensitive periods of development can induce permanent alterations in normal physiological processes that lead to increased disease risk later in life. For cancer, inheritance of a tumor suppressor gene defect confers a high relative risk for disease development. However, these defects are rarely 100% penetrant. Traditionally, gene-environment interactions are thought to contribute to the penetrance of tumor suppressor gene defects by facilitating or inhibiting the acquisition of additional somatic mutations required for tumorigenesis. The studies presented herein identify developmental programming as a distinctive type of gene-environment interaction that can enhance the penetrance of a tumor suppressor gene defect in adult life. Using rats predisposed to uterine leiomyoma due to a germ-line defect in one allele of the tuberous sclerosis complex 2 (Tsc-2) tumor suppressor gene, these studies show that early-life exposure to the xenoestrogen, diethylstilbestrol (DES), during development of the uterus increased tumor incidence, multiplicity and size in genetically predisposed animals, but failed to induce tumors in wild-type rats. Uterine leiomyomas are ovarian-hormone dependent tumors that develop from the uterine myometrium. DES exposure was shown to developmentally program the myometrium, causing increased expression of estrogen-responsive genes prior to the onset of tumors. Loss of function of the normal Tsc-2 allele remained the rate-limiting event for tumorigenesis; however, tumors that developed in exposed animals displayed an enhanced proliferative response to ovarian steroid hormones relative to tumors that developed in unexposed animals. Furthermore, the studies presented herein identify developmental periods during which target tissues are maximally susceptible to developmental programming. These data suggest that exposure to environmental factors during critical periods of development can permanently alter normal physiological tissue responses and thus lead to increased disease risk in genetically susceptible individuals. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate whether an incongruence between personality characteristics of individuals and concomitant charcteristics of health professional training environments on salient dimensions contributes to aspects of mental health. The dimensions examined were practical-theoretical orientation and the degree of structure-unstructure. They were selected for study as they are particularly important attributes of students and of learning environments. It was proposed that when the demand of the environment is disparate from the proclivities of the individual, strain arises. This strain was hypothesized to contribute to anxiety, depression, and subjective distress.^ Select subscales on the Omnibus Personality Inventory (OPI) were the operationalized measures for the personality component of the dimensions studied. An environmental index was developed to assess students' perceptions of the learning environment on these same dimensions. The Beck Depression Inventory, State-Trait Anxiety Inventory and General Well-Being schedule measured the outcome variables.^ A congruence model was employed to determine person-environment (P-E) interaction. Scores on the scales of the OPI and the environmental index were divided into high, medium, and low based on the range of scores. Congruence was defined as a match between the level of personality need and the complementary level of the perception of the environment. Alternatively, incongruence was defined as a mismatch between the person and the environment. The consistent category was compared to the inconsistent categories by an analysis of variance procedure. Furthermore, analyses of covariance were conducted with perceived supportiveness of the learning environment and life events external to the learning environment as the covariates. These factors were considered critical influences affecting the outcome measures.^ One hundred and eighty-five students (49% of the population) at the College of Optometry at the University of Houston participated in the study. Students in all four years of the program were equally represented in the study. However, the sample differed from the total population on representation by sex, marital status, and undergraduate major.^ The results of the study did not support the hypotheses. Further, after having adjusted for perceived supportiveness and life events external to the learning environment, there were no statistically significant differences between the congruent category and incongruent categories. Means indicated than the study sample experienced significantly lower depression and subjective distress than the normative samples.^ Results are interpreted in light of their utility for future study design in the investigation of the effects of P-E interaction. Emphasized is the question of the feasibility of testing a P-E interaction model with extant groups. Recommendations for subsequent research are proposed in light of the exploratory nature of the methodology. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Native peoples of the New World, including Amerindians and admixed Latin Americans such as Mexican-Americans, are highly susceptible to diseases of the gallbladder. These include cholesterol cholelithiasis (gallstones) and its complications, as well as cancer of the gallbladder. Although there is clearly some necessary dietary or other environmental risk factor involved, the pattern of disease prevalence is geographically associated with the distribution of genes of aboriginal Amerindian origin, and levels of risk generally correspond to the degree of Amerindian admixture. This pattern differs from that generally associated with Westernization, which suggests a gene-environment interaction, and that within an admixed population there is a subset whose risk is underestimated when admixture is ignored. The risk that an individual of a susceptible New World genotype will undergo a cholecystectomy by age 85 can approach 40% in Mexican-American females, and their risk of gallbladder cancer can reach several percent. These are heretofore unrecognized levels of risk, especially of the latter, because previous studies have not accounted for admixture or for the loss of at-risk individuals due to cholecystectomy. A genetic susceptibility may, thus, be as "carcinogenic" in New World peoples as any known major environmental exposure; yet, while the risk has a genetic basis, its expression as gallbladder cancer is so delayed as to lead only very rarely to multiply-affected families. Estimates in this paper are derived in part from two studies of Mexican-Americans in Starr County and Laredo, Texas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lynch syndrome, is caused by inherited germ-line mutations in the DNA mismatch repair genes resulting in cancers at an early age, predominantly colorectal (CRC) and endometrial cancers. Though the median age at onset for CRC is about 45 years, disease penetrance varies suggesting that cancer susceptibility may be modified by environmental or other low-penetrance genes. Genetic variation due to polymorphisms in genes encoding metabolic enzymes can influence carcinogenesis by alterations in the expression and activity level of the enzymes. Variation in MTHFR, an important folate metabolizing enzyme can affect DNA methylation and DNA synthesis and variation in xenobiotic-metabolizing enzymes can affect the metabolism and clearance of carcinogens, thus modifying cancer risk. ^ This study examined a retrospective cohort of 257 individuals with Lynch syndrome, for polymorphisms in genes encoding xenobiotic-metabolizing enzymes-- CYP1A1 (I462V and MspI), EPHX1 (H139R and Y113H), GSTP1 (I105V and A114V), GSTM1 and GSTT1 (deletions) and folate metabolizing enzyme--MTHFR (C677T and A1298C). In addition, a series of 786 cases of sporadic CRC were genotyped for CYP1A1 I462V and EPHX1 Y113H to assess gene-gene interaction and gene-environment interaction with smoking in a case-only analysis. ^ Prominent findings of this study were that the presence of an MTHFR C677T variant allele was associated with a 4 year later age at onset for CRC on average and a reduced age-associated risk for developing CRC (Hazard ratio: 0.55; 95% confidence interval: 0.36–0.85) compared to the absence of any variant allele in individuals with Lynch syndrome. Similarly, Lynch syndrome individuals heterozygous for CYP1A1 I462V A>G polymorphism developed CRC an average of 4 years earlier and were at a 78% increased age-associated risk (Hazard ratio for AG relative to AA: 1.78; 95% confidence interval: 1.16-2.74) than those with the homozygous wild-type genotype. Therefore these two polymorphisms may be additional susceptibility factors for CRC in Lynch syndrome. In the case-only analysis, evidence of gene-gene interaction was seen between CYP1A1 I462V and EPHX1 Y113H and between EPHX1 Y113H and smoking suggesting that genetic and environmental factors may interact to increase sporadic CRC risk. Implications of these findings are the ability to identify subsets of high-risk individuals for targeted prevention and intervention. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension (HT) is mediated by the interaction of many genetic and environmental factors. Previous genome-wide linkage analysis studies have found many loci that show linkage to HT or blood pressure (BP) regulation, but the results were generally inconsistent. Gene by environment interaction is among the reasons that potentially explain these inconsistencies between studies. Here we investigate influences of gene by smoking (GxS) interaction on HT and BP in European American (EA), African American (AA) and Mexican American (MA) families from the GENOA study. A variance component-based method was utilized to perform genome-wide linkage analysis of systolic blood pressure (SBP), diastolic blood pressure (DBP), and HT status, as well as bivariate analysis for SBP and DBP for smokers, non-smokers, and combined groups. The most significant results were found for SBP in MA. The strongest signal was for chromosome 17q24 (LOD = 4.2), increased to (LOD = 4.7) in bivariate analysis but there was no evidence of GxS interaction at this locus (p = 0.48). Two signals were identified only in one group: on chromosome 15q26.2 (LOD = 3.37) in non-smokers and chromosome 7q21.11 (LOD = 1.4) in smokers, both of which had strong evidence for GxS interaction (p = 0.00039 and 0.009 respectively). There were also two other signals, one on chromosome 20q12 (LOD = 2.45) in smokers, which became much higher in the combined sample (LOD = 3.53), and one on chromosome 6p22.2 (LOD = 2.06) in non-smokers. Neither peak had very strong evidence for GxS interaction (p = 0.08 and 0.06 respectively). A fine mapping association study was performed using 200 SNPs in 30 genes located under the linkage signals on chromosomes 15 and 17. Under the chromosome 15 peak, the association analysis identified 6 SNPs accounting for a 7 mmHg increase in SBP in MA non-smokers. For the chromosome 17 linkage peak, the association analysis identified 3 SNPs accounting for a 6 mmHg increase in SBP in MA. However, none of these SNPs was significant after correcting for multiple testing, and accounting for them in the linkage analysis produced very small reductions in the linkage signal. ^ The linkage analysis of BP traits considering the smoking status produced very interesting signals for SBP in the MA population. The fine mapping association analysis gave some insight into the contribution of some SNPs to two of the identified signals, but since these SNPs did not remain significant after multiple testing correction and did not explain the linkage peaks, more work is needed to confirm these exploratory results and identify the culprit variations under these linkage peaks. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bladder cancer is the fourth most common cancer in men in the United States. There is compelling evidence supporting that genetic variations contribute to the risk and outcomes of bladder cancer. The PI3K-AKT-mTOR pathway is a major cellular pathway involved in proliferation, invasion, inflammation, tumorigenesis, and drug response. Somatic aberrations of PI3K-AKT-mTOR pathway are frequent events in several cancers including bladder cancer; however, no studies have investigated the role of germline genetic variations in this pathway in bladder cancer. In this project, we used a large case control study to evaluate the associations of a comprehensive catalogue of SNPs in this pathway with bladder cancer risk and outcomes. Three SNPs in RAPTOR were significantly associated with susceptibility: rs11653499 (OR: 1.79, 95%CI: 1.24–2.60), rs7211818 (OR: 2.13, 95%CI: 1.35–3.36), and rs7212142 (OR: 1.57, 95%CI: 1.19–2.07). Two haplotypes constructed from these 3 SNPs were also associated with bladder cancer risk. In combined analysis, a significant trend was observed for increased risk with an increase in the number of unfavorable genotypes (P for trend<0.001). Classification and regression tree analysis identified potential gene-environment interactions between RPS6KA5 rs11653499 and smoking. In superficial bladder cancer, we found that PTEN rs1234219 and rs11202600, TSC1 rs7040593, RAPTOR rs901065, and PIK3R1 rs251404 were significantly associated with recurrence in patients receiving BCG. In muscle invasive and metastatic bladder cancer, AKT2 rs3730050, PIK3R1 rs10515074, and RAPTOR rs9906827 were associated with survival. Survival tree analysis revealed potential gene-gene interactions: patients carrying the unfavorable genotypes of PTEN rs1234219 and TSC1 rs704059 exhibited a 5.24-fold (95% CI: 2.44–11.24) increased risk of recurrence. In combined analysis, with the increasing number of unfavorable genotypes, there was a significant trend of higher risk of recurrence and death (P for trend<0.001) in Cox proportional hazard regression analysis, and shorter event (recurrence and death) free survival in Kaplan-Meier estimates (P log rank<0.001). This study strongly suggests that genetic variations in PI3K-AKT-mTOR pathway play an important role in bladder cancer development. The identified SNPs, if validated in further studies, may become valuable biomarkers in assessing an individual's cancer risk, predicting prognosis and treatment response, and facilitating physicians to make individualized treatment decisions. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The BCR gene is involved in the pathogenesis of Philadelphia chromosome-positive (Ph$\sp1$) leukemias. Typically, the 5$\sp\prime$ portion of BCR on chromosome 22 becomes fused to a 5$\sp\prime$ truncated ABL gene from chromosome 9 resulting in a chimeric BCR-ABL gene. To investigate the role of the BCR gene product, a number of BCR peptide sequences were used to generate anti-BCR antibodies for detection of BCR and BCR-ABL proteins. Since both BCR and ABL proteins have kinase activity, the anti-BCR antibodies were tested for their ability to immunoprecipitate BCR and BCR-ABL proteins from cellular lysates by use of an immunokinase assay. Antisera directed towards the C-terminal portions of P160 BCR, sequences not present in BCR-ABL proteins, were capable of co-immunoprecipitating P210 BCR-ABL from the Ph$\sp1$- positive cell line K562. Re-immunoprecipitation studies following complete denaturation showed that C-terminal BCR antisera specifically recognized P160 BCR but not P210 BCR-ABL. These and other results indicated the presence of a P160 BCR/P210 BCR-ABL protein complex in K562 cells. Experiments performed with Ph$\sp1$-positive ALL cells and uncultured Ph$\sp1$-positive patient white blood cells established the general presence of BCR/BCR-ABL protein complexes in BCR-ABL expressing cells. However, two cell lines derived from Ph$\sp1$-positive patients lacked P160 BCR/P210 BCR-ABL complexes. Lysates from one of these cell lines mixed with lysates from a cell line that expresses only P160 BCR failed to generate BCR/BCR-ABL protein complexes in vitro indicating that P160 BCR and P210 BCR-ABL do not simply oligomerize.^ Two-dimensional tryptic maps were performed on both BCR and BCR-ABL proteins labeled in vitro with $\sp{32}$P. These maps indicate that the autophosphorylation sites in BCR-ABL proteins are primarily located within BCR exon 1 sequences in both P210 and P185 BCR-ABL, and that P160 BCR is phosphorylated in trans in similar sites by the activated ABL kinase of both BCR-ABL proteins. These results provide strong evidence that P160 BCR serves as a target for the BCR-ABL oncoprotein.^ K562 cells, induced to terminally differentiate with the tumor promoter TPA, show a loss of P210 BCR-ABL kinase activity 12-18 hours after addition of TPA. This loss coincides with the loss of activity in P160 BCR/P210 BCR-ABL complexes but not with the loss of the P210 BCR-ABL, suggesting the existence of an inactive form of P210 BCR-ABL. However, a degraded BCR-ABL protein served as the kinase active form preferentially sequestered within the remaining BCR/BCR-ABL protein complex.^ The results described in this thesis form the basis for a model for BCR-ABL induced leukemias which is presented and discussed. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of male cancer-related deaths in the United States. Interestingly, prostate cancer preferentially metastasizes to skeletal tissue. Once in the bone microenvironment, advanced prostate cancer becomes highly resistant to therapeutic modalities. Several factors, such as extracellular matrix (ECM) components, have been implicated in the spread and propagation of prostatic carcinoma. In these studies, we have utilized the PC3 cell line, derived from a human bone metastasis, to investigate the influence of the predominant bone ECM protein, type I collagen, on prostate cancer cell proliferation and gene expression. We have also initiated the design and production of ribozymes to specific gene targets that may influence prostate cancer bone metastasis. ^ Our results demonstrate that PC3 cells rapidly adhere and spread on collagen I to a greater degree than on fibronectin (FN) or poly-L-lysine (PLL). Flow cytometry analysis reveals the presence of the α1, α2 and α3 collagen binding integrin subunits. The use of antibody function blocking studies reveals that PC3 cells can utilize α2β 1 and α3β1 integrins to adhere to collagen I. Once plated on collagen I, the cells exhibit increased rates of proliferation compared with cells plated on FN or tissue culture plastic. Additionally, cells plated on collagen I show increased expression of proteins associated with progression through G1 phase of the cell cycle. Inhibitor studies point to a role for phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and p70 S6 kinase in collagen I-mediated PC3 cell proliferation and cyclin D1 expression. To further characterize the effect of type I collagen on prostate cancer bone metastasis, we utilized a cDNA microarray strategy to monitor type I collagen-mediated changes in gene expression. Results of this analysis revealed a gene expression profile reflecting the increased proliferation occurring on type I collagen. Microarray analysis also revealed differences in the expression of specific gene targets that may impact on prostate cancer metastasis to bone. ^ As a result of our studies on the interaction of prostate cancer cells and the skeletal ECM, we sought to develop novel molecular tools for future gene therapy of functional knockdown experiments. To this end, we developed a series of ribozymes directed against the α2 integrin and at osteopontin, a protein implicated in the metastasis of various cancers, including prostate. These ribozymes should facilitate the future study of the mechanism of prostate cancer cell proliferation, and disease progression occurring at sites of skeletal metastasis where a type I collagen-based environment predominates. ^ Together these studies demonstrate the involvement of bone ECM proteins on prostate cancer cell proliferation and suggest that they may play a significant role on the growth of prostate metastases once in the bone microenvironment. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerous studies have been carried out to try to better understand the genetic predisposition for cardiovascular disease. Although it is widely believed that multifactorial diseases such as cardiovascular disease is the result from effects of many genes which working alone or interact with other genes, most genetic studies have been focused on identifying of cardiovascular disease susceptibility genes and usually ignore the effects of gene-gene interactions in the analysis. The current study applies a novel linkage disequilibrium based statistic for testing interactions between two linked loci using data from a genome-wide study of cardiovascular disease. A total of 53,394 single nucleotide polymorphisms (SNPs) are tested for pair-wise interactions, and 8,644 interactions are found to be significant with p-values less than 3.5×10-11. Results indicate that known cardiovascular disease susceptibility genes tend not to have many significantly interactions. One SNP in the CACNG1 (calcium channel, voltage-dependent, gamma subunit 1) gene and one SNP in the IL3RA (interleukin 3 receptor, alpha) gene are found to have the most significant pair-wise interactions. Findings from the current study should be replicated in other independent cohort to eliminate potential false positive results.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Schizophrenia (SZ) is a complex disorder with high heritability and variable phenotypes that has limited success in finding causal genes associated with the disease development. Pathway-based analysis is an effective approach in investigating the molecular mechanism of susceptible genes associated with complex diseases. The etiology of complex diseases could be a network of genetic factors and within the genes, interaction may occur. In this work we argue that some genes might be of small effect that by itself are neither sufficient nor necessary to cause the disease however, their effect may induce slight changes to the gene expression or affect the protein function, therefore, analyzing the gene-gene interaction mechanism within the disease pathway would play crucial role in dissecting the genetic architecture of complex diseases, making the pathway-based analysis a complementary approach to GWAS technique. ^ In this study, we implemented three novel linkage disequilibrium based statistics, the linear combination, the quadratic, and the decorrelation test statistics, to investigate the interaction between linked and unlinked genes in two independent case-control GWAS datasets for SZ including participants of European (EA) and African (AA) ancestries. The EA population included 1,173 cases and 1,378 controls with 729,454 genotyped SNPs, while the AA population included 219 cases and 288 controls with 845,814 genotyped SNPs. We identified 17,186 interacting gene-sets at significant level in EA dataset, and 12,691 gene-sets in AA dataset using the gene-gene interaction method. We also identified 18,846 genes in EA dataset and 19,431 genes in AA dataset that were in the disease pathways. However, few genes were reported of significant association to SZ. ^ Our research determined the pathways characteristics for schizophrenia through the gene-gene interaction and gene-pathway based approaches. Our findings suggest insightful inferences of our methods in studying the molecular mechanisms of common complex diseases.^