8 resultados para Fibroblast Growth Factors

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle differentiation involves sequential events in which proliferating undifferentiated myoblasts withdraw from the cell cycle and fuse to form multinucleated myotubes. The process of fusion is accompanied by the disappearance of proteins associated with cell proliferation and the coordinate induction of a battery of muscle-specific gene products, which includes the muscle isoenzyme of creatine kinase, nicotinic acetylcholine receptor, and contractile proteins such as alpha-actin. The molecular events associated with myogenesis are particularly amenable to experimental analysis because the events which occur in vivo can be recapitulated in vitro using established muscle cell lines. Initiation of myogenic differentiation in vitro can be achieved by removing serum from the culture medium. Myogenesis, therefore, can be considered to be regulated through a repression-type of mechanism by components in serum. The objectives of this project were to identify the components involved in regulation of myogenesis and approach the mechanism(s) whereby these components achieve their regulatory function. Initially, the effects of a series of polypeptide growth factors on myogenesis were examined. Among them TGF$\beta$ and FGF were found to be potent inhibitors of myogenic differentiation which did not affect cell proliferation. The inhibitory effects of these growth factors on differentiation requires their persistent presence in the culture medium. After myoblasts have undergone fusion, they become refractory to the inhibitory effects of TGF$\beta$, FGF, and serum. When fusion is inhibited by the presence of EGTA, a Ca$\sp{2+}$ chelator, muscle-specific genes are expressed reversibly upon removal of inhibitory growth factors. Subsequent exposure of biochemically differentiated cells to serum or TGF$\beta$ leads to down-regulation of muscle-specific genes. Stimulation with serum also leads to reentry of myocytes into the cell cycle, whereas fused myotubes are irreversibly and terminally differentiated. Measurement of levels of TGF$\beta$ receptors reveals that under non-fusing conditions, TGF$\beta$ receptor levels in biochemically differentiated myocytes remained as high as in undifferentiated myoblasts, while during terminal differentiation, TGF$\beta$ receptors decreased at least five-fold. Thus, down-regulation of TGF$\beta$ receptors is coupled to irreversible differentiation, but not reversible differentiation in the absence of fusion. The possible involvement of second messenger systems, such as cAMP and protein kinase C, in the pathway(s) by which TGF$\beta$, FGF, or serum factors transduce their signals from the cell surface to the nucleus was also examined. The results showed that myogenic differentiation is subject to negative regulation through cAMP elevation-dependent and cAMP elevation-independent pathways and that serum mitogens, TGF$\beta$ and FGF inhibit differentiation through a mechanism independent of cAMP-elevation or protein kinase C activation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heparan sulfate (HS)-fibroblast growth factor (FGF) signaling system is a ubiquitous regulator that senses local environmental changes and mediates cell-to-cell communication. This system consists of three mutually interactive components. These are regulatory polypeptides (FGF), FGF receptor (FGFR) and heparan sulfate proteoglycans (FGFRHS). All four FGFR genes are expressed in the adult liver. Expression of the FGFR1–3 genes is generally associated with non-parenchymal cells while expression of the FGFR4 gene is associated with parenchymal hepatocytes. We showed that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (−/−) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7α-hydroxylase (Cyp7a), the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. These results indicated that FGFR4 was not directly involved in liver growth but exerted negative control on liver bile acid synthesis. This was confirmed in transgenic mice overexpressing the constitutively active human FGFR4 in livers. The transgenic mice exhibited decreased fecal bile acid excretion, bile acid pool size, and expression of Cyp7a. Introduction of this constitutively active human FGFR4 into FGFR4 (−/−) mice restored the inhibition of bile acid synthesis. Activation of the c-Jun N-terminal Kinase (JNK) pathway by FGFR4 correlated with the repressive effect on bile acid synthesis. ^ To determine whether FGFR4 played a broader role in liver-specific metabolic function, we examined the impact of both acute and chronic exposure to CCl 4 in FGFR4 (−/−) mice. Following acute CCl4 exposure, the FGFR4 (−/−) mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair, with no apparent effect on liver cell proliferation and restoration of cellularity. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4 (−/−) mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8 hr delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl 4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. ^ Of the 23 FGF polypeptides, FGF1 and FGF2 are present at significant levels in the liver. To determine whether FGF1 and FGF2 played a role in CCl 4-induced liver injury and fibrosis, we examined the impact of both acute and chronic exposure to CCl4 in both wild-type and FGF1-FGF2 double-knockout mice. Following acute CCl4 exposure, FGF1(−/−)FGF2(−/−) mice exhibited accelerated liver injury, overall normal liver growth and repair, and decreased liver collagen α1(I) induction. Liver fibrosis resulting from chronic CCl4 exposure was markedly decreased in livers of FGF1(−/−)FGF2(−/−) mice compared to wild-type mice. This study suggests a role for FGF1 and FGF2 in hepatic fibrogenesis. ^ In summary, our three part study shows that specific components of the ubiquitous HS-FGF signaling family in the liver context interfaces with metabolite- and xenobiotic-controlled networks to regulate liver function, but has no apparent direct effect on liver cell growth. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and physical inactivity are modifiable risk factors that are associated with several health issues; they are major factors in up to 30% of major cancers. Elevated levels of circulating insulin-like growth factor-I (IGF-I) have been associated with high body composition measurements and high cancer risk; exogenous estrogen use is associated with low circulating IGF-I levels and high cancer risk. The relationship between physical activity and circulating IGF levels is complex and findings of previous studies of their relationship remain inconsistent; however, these studies included vague definitions of physical activity. In this study, we used cross-sectional data from the Women's Health Initiative to determine the relationship between specific measures of physical activity (e.g., intensity, duration, and frequency) and circulating IGF-I levels, accounting for exogenous estrogen use and body composition. These data were collected from women enrolled at Women's Health Initiative clinical centers at Baylor College of Medicine and Wake Forest University School of Medicine. Multivariate linear regression analysis showed that circulating IGF-I and IGF-binding protein (BP) 3 levels were positively associated with frequency, duration, and intensity of physical activity. Circulating IGF-I levels and the molar IGF-I:IGF-BP3 ratio were significantly associated with frequency of walking, whereas circulating IGF-BP3 levels were significantly associated with strenuous physical activity, suggesting that different aspects of physical activity and their effects on fitness affect members of the IGF family differently. The results from our study support the recommendation of a regular exercise routine, particularly that of strenuous intensity, for postmenopausal women as a means to prevention of cancer.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishment of a myogenic phenotype involves antagonism between cell proliferation and differentiation. The recent identification of the MyoD family of muscle-specific transcription factors provides opportunities to dissect at the molecular level the mechanisms through which defined cell type-specific transcription factors respond to environmental cues and regulate differentiation programs. This project is aimed at elucidation of the molecular mechanism whereby growth factors repress myogenesis. Initial studies demonstrated that nuclear oncogenes such as c-fos, junB and c-jun are immediate early genes that respond to serum and TGF-$\beta$. Using the muscle creatine kinase (MCK) enhancer linked to the reporter gene CAT as a marker for differentiation, we showed that transcriptional function of myogenin can be disrupted in the presence of c-Fos, JunB and cjun. In contrast, JunD, which shares DNA-binding specificity with JunB and c-Jun but is expressed constitutively in muscle cells, failed to show the inhibition. The repression by Fos and Jun is targeted at KE-2 motif, the same sequence that mediates myogenin-dependent activation and muscle-specific transactivation. Deletion analysis indicated that the transactivation domain of c-Jun at the N-terminus is responsible for the repression. Considering that myogenin is a phosphoprotein and cAMP and TPA are able to regulate myogenesis, we examined whether constitutively active protein kinase C (PKC) and protein kinase A (PKA) could substitute for exogenous growth factors and prevent transcription activation by myogenin. Indeed, the basic region of myogenin is phosphorylated by PKC at a threonine that is conserved in all members of the MyoD family. Phosphorylation at this site attenuates DNA binding activity of myogenin. Protein kinase A can also phosphorylate myogenin in a region adjacent to the DNA binding domain. However, phosphorylation at this site is insufficient to abrogate myogenin's DNA binding capacity, suggesting that PKA and PKC may affect myogenin transcriptional activity through different mechanisms. These findings provide insight into the mechanisms through which growth factor signals negatively regulate the muscle differentiation program and contribute to an understanding of signal transducing pathways between the cell membrane and nucleus. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The histology of healing in a tooth extraction socket has been described in many studies. The focus of research in bone biology and healing is now centered on molecular events that regulate repair of injured tissue. Rapid progress in cellular and molecular biology has resulted in identification of many signaling molecules (growth factors and cytokines) associated with formation and repair of skeletal tissues. Some of these include members of the transforming growth factor-β superfamily (including the bone morphogenetic proteins), fibroblast growth factors, platelet derived growth factors and insulin like growth factors. ^ Healing of a tooth extraction socket is a complex process involving tissue repair and regeneration. It involves chemotaxis of appropriate cells into the wound, transformation of undifferentiated mesenchymal cells to osteoprogenitor cells, proliferation and differentiation of committed bone forming cells, extracellular matrix synthesis, mineralization of osteoid, maturation and remodeling of bone. Current data suggests that these cellular events are precisely controlled and regulated by specific signaling molecules. A plethora of cytokines; have been identified and studied in the past two decades. Some of these like transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factors (FGFs) are well conserved proteins involved in the initial response to injury and repair in soft and hard tissue. ^ The purpose of this study was to characterize the spatial and temporal localization of TGF-βl, VEGF, PDGF-A, FGF-2 and BMP-2, and secretory IgA in a tooth extraction socket model, and evaluate correlation of spatial and temporal changes of these growth factors to histological events. The results of this study showed positive correlation of histological events to spatial and temporal localization of TGF-β1, BMP-2, FGF-2, PDGF-A, and VEGF in a rabbit tooth extraction model. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epithelial-mesenchymal tissue interactions regulate the development of derivatives of the caudal pharyngeal arches (PAs) to govern the ultimate morphogenesis of the aortic arch and outflow tract (OFT) of the heart. Disruption of these signaling pathways is thought to contribute to the pathology of a significant proportion of congenital cardiovascular defects in humans. In this study, I tested whether Fibroblast Growth Factor 15 (Fgf15), a secreted signaling molecule expressed within the PAs, is an extracellular mediator of tissue interactions during PA and OFT development. Analyses of Fgf15−/− mouse embryonic hearts revealed abnormalities primarily localized to the OFT, correlating with aberrant cardiac neural crest cell behavior. The T-box-containing transcription factor Tbx1 has been implicated in the cardiovascular defects associated with the human 22q11 Deletion Syndromes, and regulates the expression of other Fgf family members within the mouse PAs. However, expression and genetic interaction studies incorporating mice deficient for Tbx1, its upstream regulator, Sonic Hedgehog (Shh), or its putative downstream effector, Fgf8, indicated that Fgf15 functions during OFT development in a manner independent of these factors. Rather, analyses of compound mutant mice indicated that Fgf15 and Fgf9, an additional Fgf family member expressed within the PAs, genetically interact, providing insight into the factors acting in conjunction with Fgf15 during OFT development. Finally, in an effort to further characterize this Fgf15-mediated developmental pathway, promoter deletion analyses were employed to isolate a 415bp sequence 7.1Kb 5′ to the Fgf15 transcription start site both necessary and sufficient to drive reporter gene expression within the epithelium of the PAs. Sequence comparisons among multiple mammalian species facilitated the identification of evolutionarily conserved potential trans-acting factor binding sites within this fragment. Subsequent studies will investigate the molecular pathway(s) through which Fgf15 functions via identification of factors that bind to this element to govern Fgf15 gene expression. Furthermore, targeted deletion of this element will establish the developmental requirement for pharyngeal epithelium-derived Fgf15 signaling function. Taken as a whole, these data demonstrate that Fgf15 is a component of a novel, Tbx1-independent molecular pathway, functioning within the PAs in a manner cooperative with Fgf9, required for proper development of the cardiac OFT. ^