4 resultados para Equipment Design

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deflection of conventional and newly introduced nondeflecting dental local anesthetic needles were compared in vitro by radiographic examination of the course of the needles in a hydrocolloid impression material. Results indicated significantly less deflection of the new needles when compared to a variety of conventional needles. Controlled clinical trials will be required to test the significance of this finding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Health Belief Model (HBM) provided the theoretical framework for examining Universal Precautions (UP) compliance factors by Firefighter, EMTs and Paramedics (prehospital care providers). A convenient sample of prehospital care providers (n = 4000) from two cities (Houston and Washington DC), were surveyed to explore the factors related to their decision to comply with Universal Precautions. Eight hundred and sixty-five useable questionnaires were analyzed. The responders were primarily male (95.7%) eight hundred and twenty-eight and thirty-seven were female, prehospital based (100%), EMTs (60.0%) and paramedics (12.8%) who had a mean 13 years of prehospital care experience. ^ Linear regression was used to evaluate the four hypotheses. The first hypothesis evaluating perceived susceptibility and seriousness with reported UP use was statistically significant (p = < .05). Perceived susceptibility, when considered independently, did not make a significant contribution (t = −4.2852; p = 0.0000) to the stated use of Universal precautions. The hypothesis is not supported as stated. The data indicates the opposite effect. Supported is the premise that as perceived susceptibility and perceived seriousness increase the use of Universal Precautions decreases. Hypothesis two tested perceived benefits with internal and external barriers. Both perceived benefits and internal and external barriers as well as the overall regression were significant (F = 112.6, p = 0.0000). The contribution of internal and external barriers was statistically significant (t = 0.0175; p = 0.0000) and (t = 0.0128; p = 0.0000). Hypothesis three which tested modifying factors, cues to action, select demographic variables, and the main effects of the HBM with self reported UP compliance overall was significant. The variables gender, birth, education, job type, EMS certification, years of service, years of experience providing patient care, Universal Precautions training hours, type of apparatus assigned to and the number of EMS related incidents responded to in a month were found to have a significant contribution to the stated use of Universal Precautions. ^ The additive effects were tested by use of a stepwise regression that assessed the contribution of each of the significant variables. Three variables in the equation were statistically significant. Internal barriers (t = −8.5507; p = 0.0000), external barriers (t = −6.2862; p = 0.000) and job type 2 & 3. Job type two (t = −2.8464; p = 0.0045 is titled Engineer/Operator. Job type three (t = −2.5730; p = 0.0103) is titled captain. The overall regression was significant (F = 24.06; p = 0.000). The Hypothesis is supported in the certain demographic variables do influence the stated use of Universal precautions and that as internal and external barriers are decreased, there is an increase in the stated use of Universal Precautions. ^ In summary, this study demonstrated that internal and external barriers have a significant impact on the stated use of Universal Precautions. Internal barriers are those factors within the individual that require an internal change (i.e., forgetfulness, freedom, perception of the urgency of the patient's needs etc.) and external barriers are things in the environment that can be altered (i.e., equipment design, availability of equipment, ease of use). These two model variables explained 23%–30% of the variance. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.