14 resultados para E. coli K-12
em DigitalCommons@The Texas Medical Center
Resumo:
Complete NotI, SfiI, XbaI and BlnI cleavage maps of Escherichia coli K-12 strain MG1655 were constructed. Techniques used included: CHEF pulsed field gel electrophoresis; transposon mutagenesis; fragment hybridization to the ordered $\lambda$ library of Kohara et al.; fragment and cosmid hybridization to Southern blots; correlation of fragments and cleavage sites with EcoMap, a sequence-modified version of the genomic restriction map of Kohara et al.; and correlation of cleavage sites with DNA sequence databases. In all, 105 restriction sites were mapped and correlated with the EcoMap coordinate system.^ NotI, SfiI, XbaI and BlnI restriction patterns of five commonly used E. coli K-12 strains were compared to those of MG1655. The variability between strains, some of which are separated by numerous steps of mutagenic treatment, is readily detectable by pulsed-field gel electrophoresis. A model is presented to account for the difference between the strains on the basis of simple insertions, deletions, and in one case an inversion. Insertions and deletions ranged in size from 1 kb to 86 kb. Several of the larger features have previously been characterized and some of the smaller rearrangements can potentially account for previously reported genetic features of these strains.^ Some aspects of the frequency and distribution of NotI, SfiI, XbaI and BlnI cleavage sites were analyzed using a method based on Markov chain theory. Overlaps of Dam and Dcm methylase sites with XbaI and SfiI cleavage sites were examined. The one XbaI-Dam overlap in the database is in accord with the expected frequency of this overlap. The occurrence of certain types of SfiI-Dcm overlaps are overrepresented. Of the four subtypes of SfiI-Dcm overlap, only one has a partial inhibitory effect on the activity of SfiI. Recognition sites for all four enzymes are rarer than expected based on oligonucleotide frequency data, with this effect being much stronger for XbaI and BlnI than for NotI and SfiI. The latter two enzyme sites are rare mainly due to apparent negative selection against GGCC (both) and CGGCCG (NotI). The former two enzyme sites are rare mainly due to effects of the VSP repair system on certain di-tri- and tetranucleotides, most notably CTAG. Models are proposed to explain several of the anomalies of oligonucleotide distribution in E. coli, and the biological significance of the systems that produce these anomalies is discussed. ^
Resumo:
Post-replication DNA mismatch repair plays crucial roles in mutation avoidance and maintenance of chromosome stability in both prokaryotes and eukaryotes. In humans, deficiency in this repair system leads to a predisposition for certain cancers. The biochemistry of this repair system has been best studied in a model bacterium Escherichia coli. In this thesis, regulation of expression of mutS, mutL and mutH genes, whose products mediate methyl-directed mismatch (MDM) repair in E. coli, is investigated. One-step affinity purification schemes were developed to purify E. coli MutS, MutL and MutH proteins fused to a His-6-affinity tag. His-6-MutS exhibited the same mismatch binding activity and specificity as the native MutS protein. Purified His-6-MutS, -MutL and -MutH proteins were used to develop quantitative Western blotting assays for amounts of MutS, MuL and MutH proteins under various conditions. It was found that the three proteins were present in relatively low amounts in exponentially growing cells and MutS and MutH were diminished in stationary-phase cells. Further studies indicated that the drop in the amounts of MutS and MutH proteins in stationary-phase cells was mediated through RpoS, a key global regulator of stationary-phase transition. In both exponential- and stationary-phase cells, MutS amount was also negatively regulated by the Hfq (HF-I) global regulator, which is required for RpoS translation, through an RpoS-independent mechanism. $\beta$-galactosidase assays of mutS-lacZ operon and gene fusions suggested that hfq regulates mutS posttranscriptionally, and RNase T2 protection assays revealed that Hfq destabilizes mutS transcripts in exponentially growing cells. To study the relation between regulation of MDM repair and mutagenesis, amounts of MutS, MutL and MutH were measured in starved cells undergoing adaptive mutagenesis. It was found that MutS amount dropped drastically, MutH amount dropped slightly, whereas MutL amount remained essentially constant in starved cells. Overexpression of MutL did not reverse the drop in the amounts of MutS or MutH protein. These results ruled out several explanations for a phenomenon in which overexpression of MutL, but not MutS, reversed adaptive mutagenesis. The findings further suggested that functional MutL is limiting during adaptive mutagenesis. The implications of regulation of the MDM repair are discussed in the context of mutagenesis, pathogenesis and tumorigenesis. ^
Resumo:
Vitamin B$\sb6$ (or pyridoxal 5$\sp\prime$-phosphate, PLP) is an essential, ubiquitous coenzyme that affects many aspects of amino acid and cellular metabolism in all organisms. The goal of this thesis is to examine the regulation of PLP biosynthesis in Escherichia coli K-12. First, PdxH oxidase is a PLP biosynthetic enzyme, which uses molecular oxygen as an electron acceptor under aerobic assay conditions. To test if facultative anaerobic E. coli uses another enzyme to replace the function of PdxH oxidase anaerobically, suppressors of a pdxH null mutant were isolated anaerobically after 2-aminopurine or spontaneous mutagenesis. Only one specific bypass mutation in another PLP biosynthetic gene pdxJ was found, suggesting that PdxH oxidase is able to function anaerobically and PdxT utilizes D-1-deoxyxyulose as a substrate. Second, regulation of the serC (pdxF)-aroA operon, which is involved the biosynthesis of L-serine, PLP and aromatic compounds was examined. A serC (pdxF) single gene transcript and a serC (pdXf)-aroA cotranscript initiated at P$\sb{serC\ (pdxF)}$ upstream of serC (pdxF) were detected. The expression of the operon is activated by leucine responsive regulatory protein (LRP) and repressed by cAMP receptor protein-cAMP complex (CRP$\cdot$cAMP) at the transcriptional level. LRP activates the operon by directly binding to the upstream consensus box. Binding of CRP$\cdot$cAMP to the upstream CRP box diminishes the activation effect of LRP. However, deletion of the CRP box did not affect the repression of CRP$\cdot$cAMP, suggesting that CRP$\cdot$cAMP may repress the operon indirectly by stimulating the activity or level of an unidentified repressor. The overall effect of this regulation is to maximize the expression of the operon when the cells are growing in minimal-glucose medium. In addition, the binding and the transcription of P$\sb{serC\ (pdxF)}$ by RNA polymerase require a supercoiled circular DNA, indicating that DNA supercoiling affects the transcription of the operon. Third, regulation of another PLP biosynthetic gene gapB was also examined. gapB is activated by CRP$\cdot$cAMP and repressed by catabolic repressor activator protein (CRA). However, the activation of CRP$\cdot$cAMP is epistatic to the repression of CRA. Due to the CRA repression, gapB was expressed at a low level in all the media tested, suggesting that it may be the rate-limiting step of PLP biosynthesis. In summary, unlike genes in many biosynthetic pathways, PLP biosynthetic genes are regulated by global regulators that are important for carbon and amino acid metabolism, instead of the end product(s) of the pathway. ^
Resumo:
The hypermodified, hydrophobic 2-methylthio-N$\sp6$-(dimethylallyl)-adenosine (ms${2{\cdot}6}\atop1$A) residue occurs $3\sp\prime$ to the anticodon in tRNA species that read codons beginning with U. The first step (i$\sp6$A37 formation) of this modification is catalyzed by dimethylallyl diphosphate:tRNA dimethyallyltransferase (EC 2.5.1.8), which is the product of the miaA gene. Subsequent steps were proposed to be catalyzed by MiaB and MiaC enzymes to complete the ms${2{\cdot}6}\atop1$A37 modification. The study of functions of the ms${2{\cdot}6}\atop1$A37 is very important because this modified base is one of the best candidates for a role in global control in response to environmental stress. This dissertation describes the further delineation of functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli K-12 cells. This work provides significant information on functions of tRNA modifications in E. coli cells to adapt to stressful environmental conditions. Three hypotheses were tested in this work.^ The first hypothesis tested was that non-optimal translation processes cause increased spontaneous mutagenesis by the induction of SOS response in starving cells. To test this hypothesis, I measured spontaneous mutation rates of wild type cells and various mutant strains which are defective in tRNA modification, SOS response, or oxidative damage repair. I found that the miaA mutation acts as a mutator that increased Lac$\sp+$ reversion rates and Trp$\sp+$ reversion frequencies of the wild-type cells in starving conditions. However, the lexA3(Ind)(which abolishes the induction of SOS response) mutation abolished the mutator phenotype of the miaA mutant. The recA430 mutation, not other identified SOS genes, decreased the Lac$\sp+$ reversion to a less extent than that of the lexA3(Ind) mutation. These results suggest that RecA together with another unidentified SOS gene product are responsible for the process.^ The second hypothesis tested was that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ molecules in form of a protein dimer. To test this hypothesis, three versions of the MiaA protein and seven species of tRNA substrates were purified. Binding studies by gel mobility shift assays, filter binding assays and gel filtration shift assays support the hypothesis that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ as a protein dimer but as a monomer to the anticodon stem-and-loop. These results were further supported by using steady state enzyme kinetic studies.^ The third hypothesis tested in this work was that the miaB gene in E. coli exists and is clonable. The miaB::Tn10dCm insertion mutation of Salmonella typhimurium was transduced to E. coli K-12 cells by using P$\sb1$ and P$\sb{22}$ bacteriophages. The insertion was confirmed by HPLC analyses of nucleotide profiles of miaB mutants of E. coli. The insertion mutation was cloned and DNA sequences adjacent to the transposon were sequenced. These DNA sequences were 86% identical to the f474 gene at 14.97 min chromosome of E. coli. The f474 gene was then cloned by PCR from the wild-type chromosome of E. coli. The recombinant plasmid complemented the mutant phenotype of the miaB mutant of E. coli. These results support the hypothesis that the miaB gene of E. coli exists and is clonable. In summary, functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli cells are further delineated in this work in perspectives of adaptation to stressful environmental conditions and protein:tRNA interaction. (Abstract shortened by UMI.) ^
Resumo:
Introduction: HEADS UP {Health Education And Discovering Science while Unlocking Potential} aims to improve health literacy and increase student interest in health science careers by providing cutting-edge content from world-renowned researchers in the Texas Medical Center and beyond to the K-12 school community. [See PDF for complete abstract]
Resumo:
A complete physical map of Escherichia coli K-12 strain MG1655 was constructed by digesting chromosomal DNA with the infrequently cutting restriction enzymes NotI, SfiI and XbaI and separating the fragments by pulsed field gel electrophoresis. The map was used to compare six K-12 strains of E. coli. Although several differences were noted and localized, the map of MG1655 was representative of all the K-12 strains tested. The maps were also used to analyze chromosomal rearrangements in the E. coli strain MG1655. The spontaneous and UV induced frequencies of tandem duplication formation were measured at several loci distributed around the chromosome. The spontaneous duplication frequency varied from 10$\sp{-5}$ to 10$\sp{-3}$ and increased at least ten-fold following mild UV irradiation treatment. Duplications of several regions of the chromosome, including the serA region and the metE region, were mapped using pulsed field gel electrophoresis. Duplications of serA were found to be large, ranging in size from 600 kb to 2100 kb. Several of the duplications isolated at serA were caused by ectopic recombination between IS5 elements and between IS186 elements. Duplications of the metE region, however, were almost exclusively the result of ectopic recombination between ribosomal RNA cistrons. Duplication frequencies were determined at both serA and metE in wild type and mismatch repair mutant strains (mutL, mutS, uvrD and recF). Even though all of the mismatch repair mutations increased duplication frequency of metE, the largest increases were observed in the mutL and mutS strains. Duplication frequency of serA was increased less dramatically by mutations in mismatch repair. Several duplications of metE isolated in a wild type and a mismatch repair mutant were mapped. The results showed that the same repeated sequences were used for duplication formation in the mismatch repair mutant as were used in the wild type strain. Several isolates showed evidence of multiple rearrangements indicating that mismatch repair may play a role in stabilizing the genome by controlling chromosomal rearrangement. ^
Resumo:
This descriptive systematic review describes intervention trials for children and youth that targeted screen time (ST) as a way to prevent or control obesity and measured ST, and at least one of the following: physical activity, dietary intake, and adiposity. Both “hands-on” (e.g., video games) and “hands free” (e.g., television viewing) ST were included. Published, completed intervention trials (k=12), not-yet-published, completed trials (k=6), and in-progress trials (k=11) were identified through searches of electronic databases, including trial registries and bibliographies of eligible study reports. Study characteristics of the 29 identified trials were coded and presented in evidence tables. Considerable attention was paid to the type of ST addressed, measures used, and the type of interventions. Based on the number of in-progress and not-yet-published trials, the number of completed, published reports will double in the next three years. Most of the studies were funded by federal sources. General populations, not restricted by race, gender, or weight status, were targets of most interventions with children ages 9-12 yeas as the modal age group. Most trials used randomized control trials in which the majority of control or comparison group received an intervention. The mean number of participants was 242.8 (SD=314.7) and interventions were delivered over an average of 10.5 months and consisted of approximately 16 sessions, with a total time of about eight hours. The majority of completed trials evaluate each of the four constructs, however, most studies have more than one measure to assess each construct (e.g., BMI and tricep skinfold thickness to evaluate adiposity) and rarely did studies use the same measures. This is likely why the majority of studies produced at least one significant intervention effect on each outcome that was assessed. The four major outcomes should be evaluated in all interventions attempting to reduce screen time in order to determine the mechanisms involved that may contribute to obesity. More importantly researchers should work together to determine the best measures to evaluate the four main constructs to allow studies to be compared. Another area for consensus is the definition of ST. ^
Resumo:
In vitro, RecA protein catalyses the exchange of single strands of DNA between different DNA molecules with sequence complementarity. In order to gain insight into this complex reaction and the roles of ATP binding and hydrolysis, two different approaches have been taken. The first is to use short single-stranded deoxyoligonucleotides as the ssDNA in strand exchange. These were used to determine the signal for hydrolysis and the structure of the RecA-DNA complex that hydrolyses ATP. I present a defined kinetic analysis of the nucleotide triphosphatase activity of RecA protein using short oligonucleotides as ssDNA cofactor. I compare the effects of both homopolymers and mixed base composition oligomers on the ATPase activity of RecA protein. I examine the steady state kinetic parameters of the ATPase reaction using these oligonucleotides as ssDNA cofactor, and show that although RecA can both bind to, and utilise, oligonucleotides 7 to 20 residues in length to support the repressor cleavage activity of RecA, these oligonucleotides are unable to efficiently stimulate the ATPase activity of RecA protein. I show that the K$\sb{\rm m}\sp{\rm ATP}$, the Hill coefficient for ATP binding, the extent of reaction, and k$\sb{\rm cat}$ are all a function of ssDNA chain length and that secondary structure may also play a role in determining the effects of a particular chain length on the ATPase activity of RecA protein.^ The second approach is to utilise one of the many mutants of RecA to gain insight into this complex reaction. The mutant selected was RecA1332. Surprisingly, in vitro, this mutant possesses a DNA-dependent ATPase activity. The K$\sb{\rm m}\sp{\rm ATP}$, Hill coefficient for ATP binding, and K$\sb{\rm m}\sp{\rm DNA}$ are similar to that of wild type. k$\sb{\rm cat}$ for the ATPase activity is reduced 3 to 12-fold, however. RecA1332 is unable to use deoxyoligonucleotides as DNA cofactors in the ATPase reaction, and demonstrates an increased sensitivity to inhibition by monovalent ions. It is able to perform strand exchange with ATP and ATP$\lbrack\gamma\rbrack$S but not with UTP, whereas the wild type protein is able to use all three nucleotide triphosphates. RecA1332 appears to be slowed in its ability to form intermediates and to convert these intermediates to products. (Abstract shortened by UMI.) ^
Resumo:
Cell division or cytokinesis is one of the most fundamental processes in biology and is essential for the propagation of all living species. In Escherichia coli, cell division occurs by ingrowth of the membrane envelope at the cell center and is orchestrated by the FtsZ protein. FtsZ self-assembles into linear protofilaments in a GTP dependent manner to form a cytoskeletal scaffold called the Z-ring. The Z-ring provides the framework for the assembly of the division apparatus and determines the site of cytokinesis. The total amount of FtsZ molecules in a cell significantly exceeds the concentration required for Z-ring formation. Hence, Z-ring formation must be highly regulated, both temporally and spatially. In particular, the assembly of Z-rings at the cell poles and over chromosomal DNA must be prevented. These inhibitory roles are played by two key regulatory systems called the Min and nucleoid occlusion (NO) systems. In E. coli, Min proteins oscillate from pole to pole; the net result of this oscillatory process is the formation of a zone of FtsZ inhibition at the cell poles. However, the replicated nucleoid DNA near the midcell must also be protected from bisection by the Z-ring which is ensured by NO. A protein called SlmA was shown to be the effector of NO in E. coli. SlmA was identified in a screen designed to isolate mutations that were lethal in the absence of Min, hence the name SlmA (synthetic lethal with a defective Min system). Furthers SlmA was shown to bind DNA and localize to the nucleoid fraction of the cell. Additionally, light scattering experiments suggested that SlmA interacts with FtsZ-GTP and alters its polymerization properties. Here we describe studies that reveal the molecular mechanism by which SlmA mediates NO in E. coli. Specifically, we determined the crystal structure of SlmA, identified its DNA binding site specificity, and mapped its binding sites on the E. coli chromosome by chromatin immuno-precipitation experiments. We went on to determine the SlmA-FtsZ structure by small angle X-ray scattering and examined the effect of SlmA-DNA on FtsZ polymerization by electron microscopy. Our combined data show how SlmA is able to disrupt Z-ring formation through its interaction with FtsZ in a specific temporal and spatial manner and hence prevent nucleoid guillotining during cell division.
Resumo:
The human endogenous retrovirus K (HERV-K) env gene encodes envelope protein comprising surface (SU) and transmembrane (TM) domains. Having shown the exclusive expression of SU in human breast cancer and the stimulation of SU-specific immune responses in patients with breast cancer, our research here confirmed and extended the data by investigating the expression of HERV-K TM envelope domain and the induction of specific immune responses against TM in breast cancer patients. We found HERV-K TM mRNA and protein expression only in human breast cancer cells but not in normal controls. The specific immune responses against TM domain were induced in mice determined by enzyme-linked immunosorbent assay (ELISA) and IFN-γ enzyme-linked immunosorbent spot (ELISPOT) assay. Furthermore, ELISA detected higher titers of anti-HERV-K TM Env IgG antibodies in sera of breast cancer patients. In addition, the magnitude of the anti-HERV TM B cell response was correlated with the disease stage. Peripheral blood mononuclear cells (PBMCs) before and after in vitro stimulation (IVS) with HERV-K TM from patients with breast cancer as well as healthy controls were tested for T cell responses against HERV-K TM domain by ELISPOT assay. Breast cancer patients (n=21) had stronger HERV-K TM-specific cellular responses than healthy controls (n=12) (P < 0.05). These findings suggest, for the first time, that HERV-K TM expression was enhanced in human breast cancer cells and was able to induce specific B cell and T cell immune responses in breast cancer patients. This study provides support for HERV-K TM as a promising source of antigen for anti-tumor immunotherapy, prevention, diagnosis, and prognosis.
Resumo:
Enterotoxigenic Escherichia coli (ETEC) causes significant morbidity and mortality in infants of developing countries and is the most common cause of diarrhea in travelers to these areas. Enterotoxigenic Escherichia coli infections are commonly caused by ingestion of fecally contaminated food. A timely method for the detection of ETEC in foods would be important in the prevention of this disease. A multiplex polymerase chain reaction (PCR) assay which has been successful in detecting the heat-labile and heat-stable toxins of ETEC in stool was examined to determine its utility in foods. This PCR assay, preceded by a glass matrix and chaotropic DNA extraction, was effective in detecting high numbers of ETEC in a variety of foods. Ninety percent of 121 spiked food samples yielded positive results. Samples of salsa from Guadalajara, Mexico and Houston, Texas were collected and underwent DNA extraction and PCR. All samples yielded negative results for both the heat-labile and heat-stable toxins. Samples were also subjected to oligonucleotide probe analysis and resulted in 5 samples positive for ETEC. Upon dilution testing, it was found that positive PCR results only occurred when 12,000 to 1,000,000 bacteria were present in 200 mg of food. Although the DNA extraction and PCR method has been shown to be both sensitive and specific in stool, similar results were not obtained in food samples. ^
Resumo:
In the current model for bacterial cell division, the FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other essential division proteins such as FtsA and ZipA. The putative protein complex ultimately generates the division septum. The essential cell division protein FtsZ is a functional and structural homolog of eukaryotic tubulin, and like tubulin, FtsZ hydrolyzes GTP and self-assembles into protein filaments in a strictly GTP-dependent manner. FtsA shares sequence similarity with members of the ATPase superfamily that include actin, but its actual function remains unknown. To test the division model and elucidate functions of the division proteins, this dissertation primarily focuses on the analysis of FtsZ and FtsA in Escherichia coli. ^ By tagging with green fluorescent protein, we first demonstrated that FtsA also exhibits a ring-like structure at the potential division site. The localization of FtsA was dependent on functional FtsZ, suggesting that FtsA is recruited to the septum by the FtsZ ring. In support of this idea, we showed that FtsA and FtsZ directly interact. Using a novel E. coli in situ assay, we found that the FtsA-FtsZ interaction appears to be species-specific, although an interspecies interaction could occur between FtsA and FtsZ proteins from two closely related organisms. In addition, mutagenesis of FtsA revealed that no single domain is solely responsible for its septal localization or interaction with FtsZ. To explore the function of FtsA, we purified FtsA protein and demonstrated that it has ATPase activity. Furthermore, purified FtsA stimulates disassembly of FtsZ polymers in a sedimentation assay but does not affect GTP hydrolysis of FtsZ. This result suggests that in the cell, FtsA may function similarly in regulating dynamic instability of the FtsZ ring during the cell division process. ^ To elucidate the structure-function relationship of FtsZ, we carried out thorough genetic and functional analyses of the mutagenized FtsZ derivatives. Our results indicate that the conserved N-terminal domain of FtsZ is necessary and sufficient for FtsZ self-assembly and localization. Moreover, we discovered a critical role for an extreme C-terminal domain of FtsZ that consists of only 12 residues. Truncated FtsZ derivatives lacking this domain, though able to polymerize and localize, are defective in ring formation in vivo as well as interaction with FtsA and ZipA. Alanine scanning mutagenesis of this region pinpointed at least five residues necessary for the function of FtsZ. Studies of protein levels and protein-protein interactions suggested that these residues may be involved in regulating protein stability and/or FtsZ-FtsA interactions. Interestingly, two of the point mutants exhibited dominant-negative phenotypes. ^ In summary, results from this thesis work have provided additional support for the division machinery model and will contribute to a better understanding of the coordinate functions of FtsA and FtsZ in the cell division process. ^
Resumo:
Many lines of clinical and experimental evidence indicate a viral role in carcinogenesis (1-6). Our access to patient plasma, serum, and tissue samples from invasive breast cancer (N=19), ductal carcinoma in situ (N=13), malignant ovarian cancer (N=12), and benign ovarian tumors (N=9), via IRB-approved and informed consent protocols through M.D. Anderson Cancer Center, as well as normal donor plasmas purchased from Gulf Coast Regional Blood Center (N=6), has allowed us to survey primary patient blood and tissue samples, healthy donor blood from the general population, as well as commercially available human cell lines for the presence of human endogenous retrovirus K (HERV-K) Env viral RNA (vRNA), protein, and viral particles. We hypothesize that HERV-K proteins are tumor-associated antigens and as such can be profiled and targeted in patients for diagnostic and therapeutic purposes. To test this hypothesis, we employed isopycnic ultracentrifugation, a microplate-based reverse transcriptase enzyme activity assay, reverse transcription – polymerase chain reaction (RT-PCR), cDNA sequencing, SDS-PAGE and western blotting, immunofluorescent staining, confocal microscopy, and transmission electron microscopy to evaluate v HERV-K activation in cancer. Data from large numbers of patients tested by reverse transcriptase activity assay were analyzed statistically by t-test to determine the potential use of this assay as a diagnostic tool for cancer. Significant reverse transcriptase enzyme activity was detected in 75% of ovarian cancer patients, 53.8% of ductal carcinoma in situ patient, and 42.1% of invasive breast cancer patient samples. Only 11.1% of benign ovarian patient and 16.7% of normal donor samples tested positive. HERV-K Env vRNA, or Env SU were detected in the majority of cancer types screened, as demonstrated by the results shown herein, and were largely absent in normal controls. These findings support our hypothesis that the presence of HERV-K in patient blood circulation is an indicator of cancer or pre-malignancy in vivo, that the presence of HERV-K Env on tumor cell surfaces is indicative of malignant phenotype, and that HERV-K Env is a tumor-associated antigen useful not only as a diagnostic screening tool to predict patient disease status, but also as an exploitable therapeutic target for various novel antibody-based immunotherapies.